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Many real-world optimization problems require computationally expensive computer or physical 
simulations for evaluating their candidate solutions. Often, traditional gradient-based mathematical 
programming methods cannot be applied directly to these problems since analytic formulations are 
unavailable. Evolutionary algorithms (EA) cannot directly solve them either since a large number of 
function evaluations are unaffordable. In recent years, various kinds of novel methods for 
computationally expensive optimization problems have been proposed and surrogate model assisted 
evolutionary algorithm (SAEA) is attracting more and more attention.  
 
To promote research on expensive optimization, we propose to organize a competition focusing on 
small- to medium-scale (from 10 decision variables to 30 decision variables) real parameter bound 
constrained single-objective computationally expensive optimization. We encourage all participants to 
test their algorithms on the CEC 14 expensive optimization test suite which includes 24 black-box 
benchmark functions (8 popular test problems with 10, 20 and 30 dimensions). The participants are 
required to send the final results in the format given in the technical report to the organizers.The 
organizers will conduct an overall analysis and comparison. Special attention will be paid to which 
algorithm has advantages on which kind of problems.   
 

The C and Matlab codes for CEC’14 test suite can be downloaded from the website given below: 

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014 
 
 
 
1. Introduction to the 24 CEC’14 expensive optimization test problems 
 
1.1 Summary of CEC’14 expensive optimization test problems 
 
Eight popular test functions are used. The test suites include unimodal / multi-modal, continuous / 
discrete and separable / non-separable functions. All test functions are scalable and 10 decision 
variables, 20 decision variables and 30 decision variables are used. The test problems are summarized 
in Table I.  
 



 

 

 
Table I. Summary of the CEC’ 14 expensive optimization test problems 
 
No Functions Dimensionality Search ranges * *( )i if f x  

1 Sphere function 10, 20, 30 [-5.12,5.12] 0 
2 Ellipsoid function 10, 20, 30 [-5.12,5.12] 0 
3 Rotated Ellipsoid function 10, 20, 30 [-5.12,5.12] 0 
4 Step function 10, 20, 30 [-5.12,5.12] 0 
5 Ackley’s function 10, 20, 30 [-32,32] 0 
6 Griewank’s function 10, 20, 30 [-600,600] 0 
7 Rosenbrock’s function 10, 20, 30 [-2.048,2.048] 0 
8 Rastrigin’s function 10, 20, 30 [-5.12,5.12] 0 
 
Please notice: These problems should be treated as black-box optimization problems and without any 
prior knowledge. Neither the analytical equations nor the problem landscape characters extracted from 
analytical equations are allowed to be used, except the continuous / integer decision variables. 
However, the dimensionality and the number of available function evaluations can be considered as 
known values and can be used.  
 
 
1.2Definitions of CEC’14 expensive optimization test problems 
 
1) Sphere function 
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Figure 1. 3-D map for 2-D Sphere function 

 
Properties: 
 
 Unimodal 

 
 

2) Ellipsoid function 
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Figure 2. 3-D map for 2-D Ellipsoid function 
 
Properties: 
 
 Unimodal 

 
 
3) Rotated Ellipsoid function 
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M is the rotation matrix.  

 
 

Figure 3. 3-D map for 2-D Rotated Ellipsoid function 
 
 
Properties: 
 
 Unimodal 

 
 
4) Step function 
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Figure 4. 3-D map for 2-D Step function 

 
Properties: 
 
 Unimodal 
 Discontinuous  

 
 
5) Ackley’s function 
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Figure 5. 3-D map for 2-D Ackley’s function 
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Properties: 
 
 Multi-modal 

 
 
6) Griewank’s function 
 

2

6
1 1

( ) cos( ) 1
4000

DD
i i

i i

x x
f

i 

   x
 

6 6( ) ( ) : 10, 20,30F f x D x
  

 
 

Figure 6. 3-D map for 2-D Griewank’sfunction 
 
Properties: 
 
 Multi-modal 

 
 

7) Rosenbrock’s function 
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Figure 7. 3-D map for 2-D Rosenbrock’sfunction 
 
Properties: 
 
 Multi-modal 
 Non-separable  
 Having a very narrow valley from local optimum to global optimum 

 
 
8) Rastrigin’s function 
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Figure 8. 3-D map for 2-D Rastrigin’sfunction 
 
Properties: 
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 Multi-modal 
 
 
2. Evaluation criteria 
 
2.1 Experimental setting: 
 

 Number of independent runs: 30 
 Maximum number of exact function evaluations:  

o 10-dimensional problems: 500 
o 20-dimensional problems: 1,000 
o 30-dimensional problems: 1,500 

 Initialization: Any problem-independent initialization method is allowed. 
 Global optimum: All problems have the global optimum within the given bounds and there is 

no need to perform search outside of the given bounds for these problems.  
 Termination: Terminate when reaching the maximum number of exact function evaluations or 

the error value ( * *( )i if f x ) is smaller than 810 . 

 
2.2 Results to record:  
 
(1)Current best function values: 
 
Record current best function values in each iteration for each run. Sort the obtained best function 
values after the maximum number of exact function evaluations from the smallest (best) to the largest 
(worst) and present the best, worst, mean, median and standard deviation values for the 30 runs. Error 

values smaller than 810  are taken as zero.  
 
(2) Algorithm complexity: 
 
For expensive optimization, the criterion to judge the efficiency is the obtained best result vs. number 
of exact function evaluations. But the computational overhead on surrogate modeling and search is 
also considered as a secondary evaluation criterion. Considering that for different data sets, the 
computational overhead for a surrogate modeling method can be quite different, the computational 
overhead of each problem is necessary to be reported. Often, compared to the computational cost on 
surrogate modeling, the cost on 500, 1000 and 1500 function evaluations can almost be ignored. 
Hence, the following method is used:  
 
a)  Run the test program below: 

fori=1:1000000 

x= 0.55 + (double) i; 

x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2); 

end 

Computing time for the above=T0; 

 

b) The average complete computing time for the algorithm = 1T


 

 
The complexity of the algorithm is measured by: 1 / 0T T


.  

 
(3) Parameters: 



 

 

 
Participants are requested not to search for the best distinct set of parameters for each 
problem/dimension/etc. Please provide details on the following whenever applicable: 
 
a) All parameters to be adjusted 
b) Corresponding dynamic ranges 
c) Guidelines on how to adjust the parameters 
d) Estimated cost of parameter tuning in terms of number of FEs 
e) Actual parameter values used. 
 
 
(4)Encoding  
 
If the algorithm requires encoding, then the encoding scheme should be independent of the specific 
problems and governed by generic factors such as the search ranges, dimensionality of the problems, 
etc. 
 
(5) Results format 
 
The participants are required to send the final results as the following format to the organizers and the 
organizers will present an overall analysis and comparison based on these results. 
Create one txt document with the name “AlgorithmName_FunctionNo._D_expensive.txt” foreach test 
function and for each dimension. For example, PSO results for test function 5 and D=30, the file name 
should be “PSO_5_30_expensive.txt”. 
 
 
The txt document should contain the mean and median values of current best function values of each 
iteration of all the 30 runs. The participant can save the results in the matrix shown in Table II and 
extracts the mean and median values of each iteration.  
 
 

Table II Information matrix for function X 
 
 Iteration 1 Iteration 2 … Iteration 500/1000/1500 
Run 1     
Run 2     
…     
Run 30     
 
Notice:  All participants are allowed to improve their algorithms further after submitting the initial 

version of their papers to CEC2014. And they are required to submit their results in the introduced 

format to the organizers after submitting the final version of paper as soon as possible.  

 

 
2.3 Results template 
 
 
Language: Matlab2008a 

Algorithm: Surrogate model assisted evolutionary algorithm A 

Results 
Notice: 



 

 

Considering the length limit of the paper, only Error Values Achieved with MaxFESare need to 
be listed.  

Table III. Results for 10D 

Func.  Best  Worst  Median  Mean  Std 

1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

11           

12           

13           

14           

15           

16           

17           

18           

19           

20           

21           

22           

23           

24  

 

Table IV. Results for 20D 

… 

Table V. Results for 30D 

… 

Algorithm Complexity 

Table VI. Computational Complexity 

Func.  1 / 0T T


 

1   

2   

3   

…   
                          23 

24 
 

 
Parameters 
 
a) All parameters to be adjusted 

b) Corresponding dynamic ranges 

c) Guidelines on how to adjust the parameters 

d) Estimated cost of parameter tuning in terms of number of FES 

e) Actual parameter values used 



 

 

 

2.4 Sorting method 
 
The mean and median values at the maximum allowed number of evaluations will be used. For each 
problem, the algorithm with the best result scores 9, the second best scores 6, the third best scores 3 
and all the others score 0.  
 

Total score = 
24

1
i

i

score

 (using mean value) + 

24

1
i

i

score

 (using median value) 

 
The top three winners will be announced.  
 
Special attention will be paid to which algorithm has advantages on which kind of problems, 
considering dimensionality and problem characteristics.  
 
 


