Functions of the kidney

- 1. Excretion of nitrogenous waste, urea & uric acid
- 2. Regulation of body fluid
 - compartments homeostasis of arterial blood pressure
- 3. Production of hormones
- renin, erythropoietin, Vit D etc
- 4. Acid-base balance

Acid - proton (H+) donor

e.g. HCl

Base - proton acceptor

e.g. NaOH

Conseqences of acid-base imbalance

Acidosis (pH < 7.4) : depression of CNS \rightarrow disorientation \rightarrow coma \rightarrow death

Alkalosis (pH > 7.4) : hyper-excitability of nerve and muscle \rightarrow convulsion \rightarrow tetany

Normal range of acid in the body fluid H+(Eg/L)Normal 3.8×10-7 1.0x10-8 - 1.0x10-7 Range Vital limit 1.58x10-8 - 1.58x10-7

<u>pH concept</u> 1 pH = Log------ = - Log H + H⁺

H+ (Eg/L)

рН

Normal Range Vital limit

3.8×10-77.41.0×10-8 - 1.0×10-77.371.58×10-8 - 1.58×10-76.80

7.4 7.37 - 7.43 6.80 - 7.80

Extracellular fluid - 7.4 Intracellular fluid - 6.0 - 7.4, average 7.0

Our body is an acid producer

- 1. Volatile acid
- $H_2CO_3 \sim 10,000$ mM of H^+
- 1 during exercise and trauma
- 2. Non-volatile or fixed acid
- H_3PO_4 breakdown product of phosphoprotein, phospholipid, phosphoglyceride & cysteine
- H₂SO₄ breakdown product of methionine and cysteine
- 50 100 mM H+

Excessive acid is produced in some pathological situations

e.g. diabetes mellitus

pH < 7.4 - acidosis pH > 7.4 - alkalosis

Responses to acid-base disturbance

- 1. Buffer
- 2. Respiratory
- 3. Renal

<u>Renal defense</u>

- 1. Secretion of H^+ and reabsorption of HCO_3^-
- 2. Production of NH_4^+
- 3. HPO_4^2 -/ HPO_4 -buffer

Reabsorption of bicarbonates in the renal tubules

Figure 30-4

Reabsorption of bicarbonate in different segments of the renal tubule. The percentages of the filtered load of bicarbonate absorbed by the various tubular segments are shown, as well as the number of milliequivalents reabsorbed per day under normal conditions.

Renal reabsorption of HCO_3^- in the proximal tubule

Renal reabsorption of HCO_3^- in the late distal tubule and collecting duct

Primary active secretion of hydrogen ions through the luminal membrane of the intercalated epithelial cells of the late distal and collecting tubules. Note that one bicarbonate ion is absorbed for each hydrogen ion secreted, and a chloride ion is passively secreted along with the hydrogen ion.

Renal reabsorption of HCO_3^- in the distal tubule

FIGURE 30-6

Primary active secretion of hydrogen ions through the luminal membrane of the epithelial cells of the distal and collecting tubules. Note that one bicarbonate ion is absorbed for each hydrogen ion secreted, and a chloride ion is passively secreted along with the hydrogen ion. This pattern of hydrogen ion secretion occurs in the intercalated cells of the late distal and collecting tubules.

<u>Renal defense</u>

1. Secretion of H^+ and reabsorption of HCO_3^-

2. Production of NH_4^+

3. HPO_4^{2-} / HPO_4^{-} buffer

Production of ammonium ion in the proximal tubule

Production of ammonium in the collecting tubule

Buffering of hydrogen ion secretion by ammonia (NH₃) in the collecting tubules. Ammonia diffuses into the tubular lumen, where it reacts with secreted hydrogen ions to form NH_4^+ , which is then excreted. For each NH_4^+ excreted, a new HCO_3^- is formed in the tubular cells and returned to the blood.

Production of glutamine \propto Acidosis

Production of glutamine \propto hyperkalaemia

<u>Renal defense</u>

1. Secretion of H^+ and reabsorption of HCO_3^-

2. Production of NH_4^+

3. HPO_4^{2-} / HPO_4^{-} buffer

<u>Renal defense</u>

- 1. Takes days to complete
- 2. Able to restore the acid-base status provided the underlying cause is removed

<u>Buffer systems in our body</u>

Buffer - a weak acid in equilibrium with its salt (base), such that it can either <u>accept</u> or <u>donate</u> H⁺

e.g. $H_2CO_3 = H^+ + HCO_3^-$ (acid) (base)

<u>Buffer systems in our body</u>

ECF

AlbuminH⁺ = Albumin + H⁺ $H_2CO_3 = H^+ + HCO_3^-$

ICF

```
ProtH<sup>+</sup> = Prot + H<sup>+</sup>
HbH<sup>+</sup> = Hb + H<sup>+</sup>
H<sub>2</sub>PO4<sup>-</sup> = H<sup>+</sup> + HPO4<sup>2-</sup>
```

Henderson-Hasselbach equation

Base pH = pK + Log-----Acid

The Isohydrous Principle

Any condition that changes the balance of any one of the buffer systems also changes the balance of all the other

<u>The most important buffer</u> <u>in the body</u>

$H^{+} + HCO_{3}^{-} = H_{2}CO_{3}$

1. Most abundant - 12 times of phosphate buffer

2.
$$H^+$$
 + HCO_3^- = H_2CO_3
Kidney $\longrightarrow H_2O + CO_2$
Lung

Respiratory defense

1. Change in ventilation causes changes in pH

Decease in ventilation is blocked by biphasic response to oxygen

<u>Respiratory defense</u>

1. Takes several hours to complete

2. More powerful than buffering system, but unable to restore the acid-base status to normal

<u>Renal defense</u>

- 1. Takes days to complete
- 2. Able to restore the acid-base status provided the underlying cause is removed

H_2CO_3 not the most ideal buffer

pK = 6.1, not close to 7.4

Kespiratory Metabolic Acidosis $[HC0_3]^{\dagger}$ $pH \downarrow PC0_2^{\dagger}$ $\frac{[HCO_3]}{PCO_2}$ Alkalosis T pH $\frac{[HCO_3]}{PCO_2}$ HCO_3 PCO_2

Effect of blood pH on the rate of alveolar ventilation.

Acidosis - pH < 7.4 Alkalosis - pH > 7.4

Renal reabsorption of HCO_3^-

Production of NH_4^+ in the proximal tubule

FIGURE 30 - 8

Production and secretion of ammonium ion (NH_4^+) by proximal tubular cells. Glutamine is metabolized in the cell, yielding NH_4^+ and bicarbonate. The ammonium ion (NH_4^+) is actively secreted into the

Production of NH_4^+ in the collecting duct

Formation of titratable acid

