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Abstract

Recent researches have shown consensus cluster-
ing can enhance the accuracy of human action cat-
egorization models by combining multiple cluster-
ings, which can be obtained from various types of
local descriptors, such as HOG, HOF and MBH.
However, consensus clustering yields final cluster-
ing without access to the underlying feature repre-
sentations of the human action data, which always
makes the final partition limited to the quality of
existing basic clusterings. To solve this problem,
we present a novel and effective Consensus Infor-
mation Bottleneck (CIB) method for unsupervised
human action categorization. CIB is capable of
learning action categories from feature variable and
auxiliary clusterings simultaneously. Specifically,
by performing Maximization of Mutual Informa-
tion (MMI), CIB maximally preserves the informa-
tion between feature variable and existing auxiliary
clusterings. Moreover, to solve MMI optimization,
a sequential solution is proposed to update data par-
tition. Extensive experiments on five realistic hu-
man action data sets show that CIB can consistently
and significantly beat other state-of-the-art consen-
sus and multi-view clustering methods.

1

Recognizing human actions automatically has been an active
research area due to its wide applications, such as sports anal-
ysis, activity monitoring, action/event retrieval, etc. However,
because of the large amount of intra-class variations, cluttered
background and occlusion, changes of view point and camera
motions, discovering action categories automatically remains
a difficult and challenging task in the domain of computer
vision.

In the past several years, many existing feature represen-
tations have achieved impressive progress, such as histogram
of oriented gradient (HOG), histogram of optical flow (HOF)
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and motion boundary histograms (MBH), but their perfor-
mances are still limited by the biases rooted in their self-
structures. Therefore, it would be pertinent to mention fea-
ture fusion method, which has recently shown excellent per-
formance for human action recognition. In feature fusion
scheme, multiple features are integrated to produce a more
discriminative new feature. For instance, [Elfiky et al., 2012]
investigated the optimal fusion of multiple features in the con-
text of compact pyramid model. P. Natarajan [Natarajan et
al., 2012] analyzed and combined color, motion, audio and
audio-visual features by late score fusion method. However,
feature fusion conducts prior to the procedure of action or ob-
ject recognition, which can hardly consider the relationships
between classes and different features.

Recently, general frameworks to deal with multiple fea-
tures have been explored. Two most common approaches
are multi-view clustering and consensus clustering, and both
of them assume that there is a single, true clustering of the
data set. Multi-view clustering [Cao et al., 2015; Kumar
and Daumé, 2011; Kumar et al., 2011; Wang et al., 2014]
uses multiple views of the data set, rather than just one
view, to improve clustering performance. It directly takes
multiple features as input views, and tries to fully leverage
the correlative information across features. However, hu-
man actions in images and videos are usually represented
by several high dimensional multi-view features, which re-
sults in the problem of the dimensionality curse. Moreover,
the trade-off determination of multiple features is also a dif-
ficult problem. Consensus clustering [Tam-On er al., 2011;
Li et al., 2007; Strehl and Ghosh, 2003; Wu et al., 2015;
Zhou et al., 2015] aims to find a single partition of data from
multiple existing basic clusterings, where each basic cluster-
ing can be generated by one type of features, such as HOG,
HOF, MBH, etc. So the final clustering is a consensus from
these basic clusterings. However, consensus clustering yields
final clustering without access to the underlying features of
the human action data, which always makes the final parti-
tion limited to the quality of existing basic clusterings.

Due to the aforementioned problems, we present a
novel and effective Consensus Information Bottleneck (CIB)
method. This algorithm learns action categories according
to one feature variable, while taking multiple clusterings ob-
tained from other features as auxiliary variables. The com-
plementary information between feature variable and existing



auxiliary clusterings is measured by Maximization of Mutual
Information (MMI). To solve MMI optimization, a sequential
solution is proposed to update data partition. Our experiments
demonstrate the effectiveness of CIB on five realistic human
action data sets. In this study, the contributions can be sum-
marized as below:

e A novel and effective consensus information bottleneck
method is proposed, which learns action categories ac-
cording to one feature variable and multiple clusterings
simultaneously. Thus, the proposed method can solve
the overreliance of consensus clustering on existing par-
titions.

e An effective measurement based on MMI is designed
to quantify the complementary information between fea-
ture variable and existing auxiliary clusterings.

2 Related Work

2.1 Consensus and Multi-view Clustering

In the past decades, many consensus clustering and multi-
view clustering methods have been proposed. [Strehl and
Ghosh, 2003] formalized consensus clustering as a combi-
natorial optimization problem in terms of shared mutual in-
formation. [Li et al., 2007] applied non-negative matrix fac-
torization (NMF) to clustering ensemble. [Wang et al., 2011]
applied a Bayesian method to consensus clustering. [Tam-On
et al., 2011] proposed a link-based approach to the cluster
ensemble problem. [Zhou et al., 2015] learned a robust con-
sensus matrix for consensus clustering via Kullback-Leibler
divergence minimization. [Wu ez al., 2015] provided a sys-
tematic study of K-means-based consensus clustering (KCC).
Recently, several studies have shown consensus clustering
can improve the performance of human action clustering. For
instance, [Yang er al., 2013] discovered motion primitives
by hierarchical clustering optical flow in spatial and motion
space. [Jones and Shao, 2014] estimated the mutual informa-
tion between two clusterings and used it to improve the results
of both clusterings simultaneously in the task of clustering of
human action in context.

Recent advances in multi-view clustering should also be
considered. [Kumar and Daumé, 2011] presented co-training
and co-regularized multi-view spectral clustering. [Wang et
al., 2014] proposed a formulation for multi-feature clustering
using minimax optimization, which unifies different feature
modalities by minimizing their pairwise disagreements. [Cao
et al., 2015] utilized Hilbert Schmidt independence criterion
as diversity term to explore the complementarity of multiple
features. However, the problem of dimensionality curse and
trade-off determination for multiple views needs to overcome.

2.2 Information Bottleneck

The Information Bottleneck (IB) method, introduced
in [Tishby ef al., 19991, is an information-theoretic frame-
work. Given the joint distribution of a source variable X
and another relevant variable Y, IB tries to extract a com-
pressed representation 7" of X, while preserving information
about Y. The notion of compression is quantified by I(X;T),
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while the informativeness is quantified by I(Y; 7). The ba-
sic quantity utilized in the IB framework is Shannon’s mutual
information, which is formally defined as:

I(X;Y) =Y Zp(w)logw. )

22 P@)p(y)
Formally, the IB function is suggested in [Tishby ez al., 1999]
as follows:

Liplp(tlx)] = 1(X;T) — BI(Y;T), (2)

where the tradeoff parameter 3 is the positive Lagrange mul-
tiplier controlling compression and informativeness. The so-
lutions of this optimization problem are characterized by the
bottleneck equations,
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where Dy (-||-) is the Kullback—Leibler divergence,
Z(x, 8) is a normalization function. The object of IB method
is to find a compressed p(t|z) of X.

IB has been extended to deal with multiple variables.
[Slonim e al., 2006] proposed multivariate extensions of IB
method. [Gao et al., 2007] concentrated on multi-view prob-
lem using traditional clustering ensemble, which merely gen-
erates final result from multiple basic clusterings. [Lou er al.,
2013] and [Yan et al., 2015] proposed multi-feature extension
of IB, which directly takes multiple features as input. [Xu et
al., 2014] utilized IB to learn a shared subspace represented
by multi-view features. In this study, we estimate the comple-
mentary information between feature variable and clusterings
and use it to improve the performance of final clustering.

3 Consensus Information Bottleneck method

In this section, we first define the problem of consensus in-
formation bottleneck (CIB) and give one formulation of the
objective function, then the optimization of CIB method is
presented.

3.1 Problem Definition

Given a collection of unlabeled videos including various hu-
man actions, such as cycling, boxing, diving, etc. In realistic
scenarios, the performances of single feature representation
are still limited by the biases rooted in their self-structures.
Two most common approaches dealing with multiple features
are consensus clustering and multi-view clustering, but they
still have their own flaws, for instance, the overreliance of
consensus clustering method on existing partitions, the di-
mensionality curse and trade-off determination of multi-view
clustering. So we are curious about whether we can draw the
advantage from both consensus and multi-view clustering.
Suppose there is an unlabeled video collection X taking
values from {1, z2, ..., z,, }, which contains various action
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Figure 1: The model of CIB method. (a) The data com-
pression shows the compressing relationships among multi-
ple variables. X, Y and T denotes the source, relevant and
compression variable respectively; C1, ..., C) are multiple
valid clusterings generated from multiple features. (b) The
information preservation implies that the compressed vari-
able 7" should preserve the information with respect to feature
variable Y and auxiliary clusterings C1, .. ., Ck.

categories, and m is the total number of videos in the data.
We assume that there are k + 1 discrete random variables
Y1,...,Y,y1 onbehalf of £+ 1 types of features of the video
data, such as HOG, HOF, MBH, STIP, 3DSIFT, etc. First,
we stochastically choose one discrete random variable as fea-
ture variable Y = {y1,y2,...,yn}, which characterizes the
videos X from one cue. Then the remaining & variables are
used to generate multiple valid clusterings C, . . ., Cy, of the
videos. The task of CIB algorithm is to learn a compressed
representation p(¢|x) from both feature variable and multiple
clusterings.

3.2 Objective Function

In this section, a novel and effective method named CIB is
proposed to discover action categories in videos by consider-
ing both feature variable and multiple clusterings. The model
of CIB is given in Figure 1, which has two parts: data com-
pression and information preservation. In data compression,
original videos X including various actions are compressed
into variable 7. In information preservation part, the com-
pressed variable 7" should preserve the information about fea-
ture variable Y and existing clusterings C', ..., C). The ob-
jective function of CIB can be formulated as follows accord-
ing to the Equation 2:

B - [I(Y,T) + /\1[(01;T) + -+ )ku(C’k,T)},
where I(X;T) measures the compactness of source vari-
able X into the compressed variable T. I(Y;T) +
I(Cy;T),...,I1(Cy;T) measures what information the
compressed variable T should preserve, of which the
I(Y;T) is on behalf of its relevant feature information,
I(Cy;T),...,I(Cy; T) denotes its information with respect
to the information of existing clusterings. [ is the balance
parameter controlling the trade-off between information com-
pression and preservation. Aj, ..., A\, are trade-off parame-
ters to balance the influence of different existing clusterings
obtained from multiple features. For the convenience of opti-
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mization, we consider the problem of maximizing

Conasp(t]2)] = [[(V3T) + MI(CH;T) + -+

MI(CT)] - 671 1(X;T), ®
which is clearly equivalent to minimize the Equation 4 by
dividing —f. In the task of unsupervised human action cat-
egorization, the number of action categories M is much less
than the source video variable X, which implies a significant
compression. Therefore, we concentrate on preserving the
information of 7" with respect to feature variable and existing
clusterings maximally. To achieve this goal, the value of (3 is
fixed to oo, so the mutual information 7(X; T') is eliminated.
Now, the objective function of CIB can be rewritten as

Lazp(t|z)] = 1(Y;T)+ MI(C1T) + - + MI(Cr; T)
(6)

the fraction I(Y;7T) indicates to maximally preserve

relevant feature information they capture about Y,
MI(Cy;T), ..., \I(Cy;T) denote the preserved in-
formation with respect to existing clusterings. This study

focuses on the hard clustering, where the value of p(t|x)
is either O or 1. Now, the task of our unsupervised human
action categorization is reduce to maximize the objective
function 6.

3.3 Optimization

To find an optimal partition of source videos X, a sequen-
tial draw-and-merge optimization method is presented. The
sequential draw-and-merge method starts with random parti-
tion of X into M clusters. At each step, a potential z € X is
drawn from its current cluster t°'¢, and then represented as a
new singleton cluster {x}. Now, we have M + 1 clusters. To
ensure the total number of clusters is M, we must merge the
singleton cluster {x} into one of clusters ¢"*. So we should
guarantee to increase the value of objective function 6 at each
draw-and-merge procedure.

The key issue of CIB is to decide which cluster " the
singleton cluster {z'} should be merged into. Let £/ and
L7t denote the value of function 6 before and after z is
drawn from its current cluster; let £™¢* denote the value of
function 6 after x is merged into some new cluster ¢"¢". The
measure of deciding merger procedure is called “merger cost”
dr, which is on behalf of the value change after one draw and
merge procedure, i.e. dp = £t — L. We should merge
{z} into t"** such that t"*" = arg min d.. In the following,
we will give the solution to this problem.

Now, we first calculate the difference of I(Y;T') in func-
tion 6 between the values of £7¢* and £/, which denoted
by Aleqrure - Let x be merged into cluster ¢ and become a

new cluster , i.e. {{x},t} = ¢, then

p(t) = p(z) + p(t), (7
7 _ @) p(t)
p(ylt) = @ p(ylx) + p@p(ylt)- (8)
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Using Equation 7 and Equation 8, we can get the following
results.

Zp ylz)
—Zp ylfb‘

Zp y\w
=p(z)DkL [P(y|«’v)||p(y|tﬂ

A[fea,tu're = p
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p(t )DKL[ (ylt)l\p
(y

= [p(z) + p(t)]JS11P(Y[2), P(Y[t )}
where the J SH is the Jensen-Shannon divergence, [[ =
{p(a:)(f;( m’;j; t)} Since JS[7 > 0, we obtain
Ifeature =

Next, we give the calculation of \I(Cy;T) + --- +
M I(Cy; T). Suppose C; is the i’th clustering from one fea-
ture representation, so we can compute the confusion matrix
R(p,q) of C; and T, where p and ¢ are clusters in C; and
T. The elements in R are co-occurrence number of source
data x belongs to both p in C; and ¢ in 7. So the mu-
tual information between 7" and C; can be calculated. Now,
the difference of \I(Cy;T) 4+ -+ + M\ I(Cy; T) in func-
tion 6 between the values of £/t and £"°" is calculated
by AIclustering = )\I[I(Cl;Taft) - I(Cl;Tnew)] + o+
e [I(Cy; T4 — I(Cy; T™™)]. So the total merger cost d
is calculated as follows:

dL = AIfeatu?"e + AIclustering- (9)

At each draw-and-merge step, x will be merged into t™¢%
such that ¢"** = argmind,, where d, is on behalf of the
information loss. Note that, once x is merged into one new
cluster, there must be some information loss, so we can get
Alciystering > 0and dz > 0. Assumed X has a true cluster-
ing C, we can obtain I(T; C;) < I(C;C;). And because T
is a compressed representation of X, so I(T;Y) < I(X;Y).
So the value of objective function 6 is upper bounded, which
is guaranteed to converge to a stable solution. The details of
CIB algorithm is shown in Algorithm 1.

3.4 Complexity Analysis

In this section, we give the computation costs of the CIB al-
gorithm. The time complexity of the random initialization at
step 2 and the procedure of drawing some z at step 5 is O(N).
At step 6, the merger cost d between x and each new cluster
t should be calculated, which takes O(IM|X||Y]), where {
is the number of repetitions that should be performed over X
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Algorithm 1 The Consensus Information Bottleneck: CIB

1: Input: Joint distribution p(X,Y"); multiple clusterings

Ci,...,Cy; trade-off parameters Ap,---, A, cluster
number M).

Initialize: 7' < Random partition of X into M clusters;
repeat

for For every x € X do
Draw: Remove x from current cluster ¢(x);
Computing merger cost:
For data point z, calculate merger costs d, of all
possible reassignments of x to different clusters
based on Equation 6;

7. Merge: Merge z into cluster t"*¢" such that t"¢" =

argminge7 dg;

8: end for

9: until Convergence

10: Output: A partition 7" of X into M clusters.

SANRANE

until convergence is attained. From the experimental section,
the CIB takes a few repetitions to converge. The M is the
number of clusters, usually, it can be considered as constant.
Note that the calculation of mutual information between ¢¢*
and multiple clusterings C1, . .., Cj, takes O(1), so the time
complexity of CIB is O(|X||Y]).

4 Experiments

4.1 Data Set Descriptions

In this section, to evaluate the effectiveness of the proposed
CIB algorithm, extensive experiments are conducted on five
benchmark video data sets. The Weizmann data set contains
10 action categories performed by 9 people, to provide a total
of 90 videos. The KTH data set contains 6 types of human
actions performed by 25 subjects in outdoor and indoor en-
vironment, total of 599 sequences. UCF Sports [Rodriguez
et al., 2008] data set consists of 1100 videos of various
sports action videos, taken from various broadcast sources.
UCF50 [Reddy and Shah, 2013] is an action recognition data
set with 50 action categories, consisting of 6000 realistic
videos in YouTube. HMDB [Kuehne ef al., 2011] data set
is a recently released large video database, which has been
collected from various sources, mostly movies, and contains
6849 clips divided into 51 action categories. Figure 2 shows
example frames in HMDB data set.

Ride Bike

Shake Hands

Dribble

Punch

Figure 2: Video frames of example action classes in HMDB
data set.

4.2 Experimental Setup

To incorporate the consensus information of auxiliary clus-
terings, we adopt the following three descriptors: STIP,
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Data sets HOG THOF TSTIP T Besi | Con k-means | pLSA | LDA | NCuts CIB
Weizmann | 59.5 | 69.8 | 66.5 | 69.8 | 67.9 52.8 612 | 642 | 645 | 76.4 (1)
KTH 585 | 685 | 689 | 689 | 70.3 52.0 664 | 669 | 682 | 721 (1)
UCF Sports | 38.7 | 53.8 | 50.4 | 53.8 | 52.4 40.3 46.3 | 51.7 | 47.1 | 55.8 (1)
UCF50 33.1 | 340 | 31.2 | 340 | 342 29.0 303 | 29.6 | 31.7 | 39.2(1)
HMDB 19.0 | 22.3 | 21.8 | 22.3 | 22.8 13.7 189 | 206 | 19.0 | 23.3(1)

Average 41.8 | 49.7 | 47.8 | 49.8 | 49.5 37.6 44.6 | 46.6 | 46.1 533

Table 1: AC (%) comparisons of CIB with original IB and other four traditional clustering methods.

HOG, HOF, to extract motion representations of the actions.
Then the bag-of-words (BoW) model is adopted to represent
videos. The size of the vocabulary in BoW model is set to
1000, which results in a 1000 dimensional frequency his-
togram of motion features. We choose one feature from STIP,
HOG, HOF randomly as our feature variable, the remaining
two features are naturally treated as clustering variables to
construct auxiliary clusterings. In this paper, the clustering
accuracy (AC) [Cai et al., 2009] is employed to evaluate the
performance of different methods. The number of categories
M is set to be identical with number of real categories on each
data set. As all algorithms are stochastic, all experiments are
run 10 times, and we report the average clustering results.

4.3 Experimental Results and Analysis

To validate the performance of the CIB approach, we adopt
five types of baselines: original IB method, traditional clus-
tering methods, consensus clustering methods, multi-view
clustering methods action clustering methods.

Original IB and CIB

The original IB method can only process one feature vari-
able. As an extension of IB method, CIB can handle feature
variable and auxiliary clusterings simultaneously in the clus-
tering procedure. In this section, we conduct the experiments
to compare the performance of CIB and original IB. As illus-
trated in Table 1, we can get the following observations:

e The performances of IB method on HOG, HOF, STIP
are different. For instance, IB method obtains the best
AC in terms of HOF feature (69.8%) on Weizmann data
set, while it gets the best result in STIP feature (68.9%)
on KTH data set. This is mainly because no feature can
perform consistently well for different clustering tasks.

The performances of original IB method on concate-
nated feature are less than satisfactory. For instance,
there is a decline on Weizmann and UCF Sports (1.9%
and 1.4%). So, concatenating features simply can not
consistently attain improved results compared with indi-
vidual feature.

The benefits of CIB method are verified as shown in Ta-
ble 1. The CIB algorithm obtains improvement on all
data sets used in this study in terms of AC value (6.6%,
3.2%, 2.0%, 5.2%, 1.0% respectively) compared with
the best results of original IB on three individual fea-
tures. So we can get the conclusion that the CIB al-
gorithm can consistently improve the clustering perfor-
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mance compared with the best results of original IB on
individual feature.

As for the comparison with pLSA, LDA, NCuts, the re-
sults of CIB method obtain great improvement (15.7%, 8.7%,
6.7%, 1.2% respectively). This phenomenon demonstrates
that the proposed CIB method is effective by exploiting the
complementary impact of feature and multiple clusterings.

Consensus Clustering Methods and CIB

CIB method gives a better performance increase over the
baseline consensus clustering methods, such as CSPA [Strehl
and Ghosh, 2003], MCLA [Strehl and Ghosh, 2003],
BCE [Wang et al., 2011]. We run IB method 15 times with
different initializations to obtain 15 base clusterings, all the
consensus clustering methods are then applied on them. From
Table 2, we note that the performance improvements of CIB
over three consensus methods on five data sets are 2.4%,
2.0%, 4.9% in terms of AC, respectively. This is mainly be-
cause that CIB can solve the overreliance of consensus clus-
tering on existing clusterings.

Multi-view Clustering Methods and CIB

In this section, the experiments are conducted to verify the
effectiveness of CIB method compared with multi-view clus-
tering methods: the Co-Training multi-view Spectral Cluster-
ing(CTSC) [Kumar et al., 20111, the Co-Regularized multi-
view Spectral Clustering (CRSC) [Kumar and Daumé, 2011]
and the Robust Multi-view Spectral Clustering (RMSC) [Xia
et al., 2014]. We implement the methods following the orig-
inal works. A glance at Table 2 shows that our method is
always better than the other three multi-view clustering meth-
ods by a large margin. Note that, CIB method just adopts one
type of feature as input, which will reduce multi-view data
dimension significantly.

Action Clustering Methods and CIB

For the comparison with action clustering in videos, we adopt
DAKM [Jones and Shao, 20141, MfIB [Lou et al., 2013] and
MVIB [Yan et al., 2015] as baselines. DAKM estimates the
mutual information between clusterings and used it to im-
prove the results of each clustering simultaneously. MfIB
and MvIB are extensions of original IB and multivariate IB
respectively, both of them take multiple features as input di-
rectly and try to leverage the correlative information across
features. Differently, (1) CIB learns action categories accord-
ing to one feature variable and multiple clusterings other than
multiple features; (2) CIB is a consensus extension of origi-
nal IB, which can capture the essence of consensus clustering



Consensus clustering

Multi-view clustering

Action clustering

Datasets  —=qpa T MCLA [ BCE | CTSC [ CRSC | RMSC | DAKM [ MfiB | MviB | /B
Weizmann | 76.3 75.3 68.3 | 48.6 47.3 43.4 66.3 674 | 689 | 764
KTH 68.4 69.8 64.7 | 63.7 62.1 71.2 70.1 703 | 719 | 72.1
UCF Sports | 54.6 59.8 544 | 532 54.6 47.7 53.9 54.1 54.6 | 558
UCF50 31.7 322 320 | 34.1 31.5 334 34.5 33.7 | 34.1 | 392
HMDB 23.7 19.2 22.7 | 22.6 22.9 22.7 20.1 21.3 | 22.1 | 233
Average 50.9 51.3 484 | 444 43.7 43.7 49.0 50.0 | 50.3 | 533
Table 2: AC (%) comparisons of CIB with other three types of clustering methods.
and multi-view clustering. From Table 2, the performances 038 Weizmann 0.75 KTH
of CIB are better than the action clustering methods. 0.74
0.75
4.4 The Impact of Parameters 9 o7 \ g 072
Since there are two auxiliary clusterings (C1, C5) in our ex- v d 07 —4—cme
. . . 0.65 —0—CIB : —[B-best
periments, we show the impacts of varying parameter A\; and Bbest
A2 on the performance of CIB on different data sets in Fig- 0 0 06 08 10 0 02 04 06 08 10
ure 3. Set \; + Ay = 1, where \; acts on Cy, Ay acts on Co. o A o o A S
Then, vary the values of A\; from 0 to 1, with 0.1 as the gap UCF Sports UCF50
between adjacent values. When \; = 0, the CIB method only 058 ——Cb
acts on feature variable Y and clustering C5. As we can see 0.57 —IB-best 04
from Figure 3, we get the following observations: o) g 038
<
e The performance of CIB fluctuates to some extent ac- 0.55 036 s
cording to the trade-off parameters. When \; varies
from 0 to 1, the value of A\ varies from 1 to O corre- 0.53 034 0 02 02 06 08 10
spondingly. However, the AC values of CIB change in 0 02 04 \ 06 08 10 o A S
small range on all the five data sets in Figure 3. That ' HMDB
is to say the proposed algorithm is not sensitive to the 0235
trade-off parameters.
e Except two values on Weizmann data set, the perfor- g 02 s
mance of CIB is always better than the best results of 0225 1B-best
original IB on individual feature. This phenomenon
demonstrates that the CIB method can cope with fea- 022 e
ture variable and auxiliary clusterings effectively and it A,
is relatively easy to choose the trade-off parameters.
4.5 Convergence of CIB algorithm Figure 3: Performance of CIB with various \.
Figure 4 shows the repetitions of CIB on UCF50 and HMDB
data set. We observe that the values of objective function 6  References

increase monotonically with each repetition and 14 iterations
are enough for convergence.

5 Conclusions

In this paper, a novel and effective Consensus Information
Bottleneck (CIB) method has been introduced for learning ac-
tion categories from feature variable and auxiliary clusterings
simultaneously. CIB adopts maximization of mutual informa-
tion to measure feature and clusterings, which can solve the
overreliance of consensus clustering on existing base cluster-
ings. Therefore, the compressed results can reflect the hidden
patterns by multiple cues. The experiments on five bench-
mark human action data sets have confirmed the effective-
ness of the proposed CIB algorithm. Our further work will
focus on incorporating heterogeneous features into the CIB
approach, and applying it to more difficult tasks, such as ac-
tion and scene categorization on large-scale data.
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