学校主页 郑大邮箱
中原关键金属实验室
郑州大学
 
  学术动态
当前位置: 首页>>学术动态
      

低碳环境材料研究所在能源环境材料研究方面取得进展

2020年08月28日  点击:[]

低碳环境材料研究所紧密依托国家低碳环保材料智能设计国家联合研究中心,在邵国胜教授带领下,深耕能源环境领域,借助计算材料学有力手段,围绕国际能源材料研究前沿和国家核能重大需求,形成了石墨烯、固态电解质、环境净化和特种薄膜和涂层特色研究方向。在2020上半年,取得以下研究进展:

1.垂直石墨烯阵列及相关碳材料

近年来石墨烯材料以其优越的电子传导能力,优良的力学、光学特征受到高度关注。与传统平铺衬底的石墨烯薄膜不同,直立石墨烯垂直于衬底方向生长,由少层石墨烯片堆砌而成。直立石墨烯不仅拥有独特的垂直形貌,其特有的优势诸如巨大的比表面、不易彼此堆叠、拥有超薄而且大量暴露的边缘等,使其在储能、传感器和能量转换器件方面有着巨大的潜力。邵国胜教授团队开发了在国际领域上首次实现了有效调控无热源大面积制备直立石墨烯,并成功应用于钠离子电池和金属空气电池。

[1] Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li–S batteries. Energy Storage Materials, 2020, 27, 159-168.  

[2] Heater-Free and Substrate-Independent Growth of Vertically Standing Graphene Using A High-Flux Plasma-Enhanced Chemical Vapor Deposition. Adv. Mater. Interfaces. 2000854. DOI: 10.1002/admi.202000854.(封面文章)

[3] Photo generated Electron Transfer Process in Heterojunctions: In Situ Irradiation XPS. Small Methods, 2020, DOI: 10.1002/smtd.202000214.

[4] Ink Engineering of Inkjet Printing Perovskite, ACS Applied Materials & Interfaces, 2020, DOI: 10.1021/acsami.0c09485

2.智能响应及环境净化材料

基于固态电解质特殊的输运特性和能带结构,首次实现了氧化物钙钛矿材料LLTO的超快气敏响应,实现了响应时间亚秒级的突破。针对能源转化与环境净化材料的能带结构不匹配和光生载流子的随机性复合问题方面,研究团队通过化学功能化实现对还原氧化石墨烯(rGO)的能带结构、功函数、电导率、亲水性和光学性质的调控。提出通过异质界面能级和功函数差异带来的界面内建电场,精确调控光生载流子在界面间的空间分离和定向迁移,实现催化性能的显著提高。首次合成了Co-MoO(3-x)纳米晶,不仅实现了过渡金属的掺杂,同时创造了丰富的氧空位,这种独特的结构使其同时具有优越的光热转化性能和表面增强拉曼检测性能

[5] Nano-porous hollow Li0.5La0.5TiO3 spheres and electronic structure modulation for ultra-fast H2S detection. J. Mater. Chem. A, 2020, 8, 2376.(前封面)

[6] Effective promotion of spacial charge separation in direct Z-scheme WO3/CdS/WS2 tandem heterojunction with enhanced visible-light-driven photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 398, 125602.

[7] Rational regulation on charge spatial separation and directional migration in the yolk-shell structural SiO2/Ni2P/rGO/Cd0.5Zn0.5S nanoreactor for efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 404, 126497.

[8] Accelerating the directional charge separation by the interfacial built-in electric fields derived from the work-function difference. Chinese Journal of Catalysis, 2021, 42: 583-594.

[9] Multilevel polarization-fields enhanced capture and photocatalytic conversion of particulate matter over flexible schottky-junction nanofiber membranes. Journal of Hazardous Materials, 2020, 395, 122639.

[10] Supercritical CO2 synthesis of Co-doped Co-MoO(3-x) nanocrystals for multifunctional light utilization, Chemical Cmmunications, 2020, 56(55), 7649-7652.

3.锂离子电池材料设计及实践

基于材料基因组方法,首次理论证明MXeneTi4C2O4MoS2@GrapheneNa+机制,,钠离子输运能力,以及结构稳定性。理论与实验相结合,获得优异的变倍率和循环性能。在理论设计的指导下,调控截止电位,探寻电位和结构间的构效关系。在锂离子电池方面,设计了“Room-like” TiO2阵列结构,又具有封闭式结构的限域作用,因此基于该结构的锂硫电池展示了优良的电化学性能。利用合金化和沉积诱导的方法,获得对锂负极的平面生长调控;实现了大电流下的沉积剥离稳定性提升。借助能量损失谱,对于LLTO的晶界补锂机制给除了直接证据。

[11] Enabling remarkable cycling performance of high-loading MoS2@Graphene anode for sodium ion batteries with tunable cut-off voltage, Journal of Power Sources, 2020, 458, 228040.

[12] Theoretical formulation of Li3a+bNaXb (X = halogen) as a potential artificial solid electrolyte interphase (ASEI) to protect the Li anode, Phys.Chem.Chem.Phys., 2020, 22, 12918.

[13] Two-pronged approach to regulate Li etching for a stable anode. Journal of Power Sources, 2020, 455, 227988.

[14] In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3-xTiO3 Scripta Materialia, 2020, 185, 134–139.

[15] “Room-like” TiO2 Array as a Sulfur Host for Lithium-Sulfur Batteries: Combining Advantagesof Array and Closed Structures. ACS Sustainable Chemistry & Engineering, 2020, 20, 7609-7616.

[16] Theoretical identification of layered MXene phase NaxTi4C2O4 as superb anodes for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2020, 8, 11177.

4.锆材表面氧化及结构演变。

锆材是我国能源领域的卡脖子问题之一,团队围绕核级锆材在氧化过程中的铁元素多化学态特性,提出了拉夫斯相的结构分化机制,并提出了基于调幅分解的热力学机制。为发展新型锆材防护薄膜提出了理论支持。

[17] Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe,Nb)2 in subcritical environment. Corrosion Science, 2020, 162, 108218.

[18] Evolution of “Spinodal decomposition”-like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment. Scripta Materialia, 2020, 187, 107–112.

以上工作受到了国家自然科学基金、河南省杰出科学家工作室、国际联合研究中心专项、一流学科建设专项等的支持。低碳环境材料研究所在前期学术积累的基础上,创办了Energy & Environmental Materials 国际期刊: https://onlinelibrary.wiley.com/journal/25750356,今年被SCIE收录。为一流学科建设和国际化做出了贡献,欢迎大家关注。

上一条:我院高温功能材料研究所成功举办学术沙龙活动 下一条:先进高分子材料研究所成功举办“材智荟·大讲堂”第三期活动

关闭