郭伟峰

作者: 时间:2020-06-30 点击数:

       

郭伟峰

副教授、硕士生导师

电子邮箱:

guowf[at]zzu.edu.cn(请将[at]换成@)

办公室:

郑州大学电气与信息工程学院1215

研究方向:

计算智能、图信号机器学习、生物医学大数据挖掘

教育背景

Ø2014/09-2019/12,西北工业大学,自动化学院,博士

Ø2018/11-2019/02,京都大学化学研究所,访问学生。

Ø2015/09-2017/12,中国科学院上海生命科学研究所,访问学生。

Ø2013/09-2014/09西北工业大学,自动化学院,硕士

Ø2009/09-2013/06华北水利水电大学,数学与信息科学学院,学士

工作经历

Ø2022-至今郑州大学电气与信息工程学院,副教授。

Ø2021-2022郑州大学,电气与工程学院,副教授。

Ø2020-2021郑州大学,电气工程学院,讲师

Ø学术兼职

Ø担任河南省生物信息学会(筹)秘书长、期刊《Genes》客座编辑2023年第十二届全国生物信息学与系统生物学大会组织委员会委员;生物信息领域Top期刊《Briefings in bioinformatics》、《Plos computational biology》的审稿人。

奖励与荣誉

Ø第16届国际生物信息会议最佳论文 (Best paper for BMC track in InCoB 2017)。

Ø首届ABB杯(2018)全国智能技术论文大赛优秀论文。

Ø第五届数据驱动复杂系统优化国际会议最佳论文。

Ø获得河南省教育厅2023年度科技成果奖二等奖。

科研项目

Ø国家自然科学基金面上项目, 49万,主持,2025-2028。

Ø河南省自然科学基金面上项目, 10万,主持,2024-2025。

Ø数字医学工程全国重点实验室开放课题,5万,主持,2024-2025。

Ø国家自然科学青年基金, 24万,主持, 2021-2023。

Ø河南省科技厅重点研发与推广专项 (科技攻关)项目, 10万,主持,2021-2022。

Ø中国博士后科学基金面上项目, 8万,主持,2021-2022。

Ø华南肿瘤国家重点实验室开放课题,5万,2021-2022。

代表文章(近5年)

[1] Liang Jing,Hu Zhuo (本人指导的2021级硕士) , Bi Ying, Cheng Han, Yu Kunjie, Yue Cai-Tong, Wang Xianfang, Guo Wei-Feng*, A Survey on Evolutionary Computation for Identifying Biomarkers of Complex Disease, IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2024.3414442. (计算机领域顶级期刊,发表当年影响因子 11.7,中科院一区)

[2] Qiao Kangjia, Liang Jing*, Guo Wei-Feng*,Hu Zhuo, Yu Kunjie, Suganthan Ponnuthurai Nagaratham. Knowledge-embedded constrained multiobjective evolutionary algorithm based on structural networkcontrol principles for personalized drug targets recognition in cancer, Information Science, 2024. doi: 10.1016/j.ins.2024.121033 (计算机领域顶级期刊,发表当年影响因子 8.1,中科院一区)

[3] Wan Han-Wen (本人指导的2019级本科生) , Wu Meng-Han, Zhao Wen-Shan , Cheng Han , Bi Ying , Wang Xian-Fang, Zhang Xiang-Rui, Li Yan , Guo Wei-Feng*. Label reusing based graph neural network for unbalanced classification of personalized driver genes in cancer. Applied Soft Computing, 2024, 159. (计算机领域顶级期刊,发表当年影响因子8.7,中科院分区一区)

[4] Hu Wei, Yang houyi, Guo Weifeng*, Xiao Na, Yang Xiaopeng*, Ren Xiangyang*. STC-UNet: Renal tumor segmentation based on enhanced feature extraction at different network levels. BMC Medical Imaging. 2024 (生物信息领域著名国际SCI期刊,发表当年影响因子2.900, JCR分区Q2) 

  [5] Liang Jing,Li Zong-Wei (本人指导的2020级硕士), Sun Ze-Ning, Bi Ying, Cheng Han, Zeng Tao*, Guo Wei-Feng *, Latent space search based multimodal optimization with personalized edge-network biomarker for multi-purpose early disease prediction, Briefings in Bioinformatics, 2023,24(6):bbad364.(生物信息领域顶级期刊,发表当年影响因子9.5,中科院分区一区)

[6] Liang Jing,Li Zong-Wei (本人指导的2020级硕士), Yue Cai-Tong, Hu Zhuo, Cheng Han, Liu Ze-Xian, Guo Wei-Feng*, Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer, Briefings in Bioinformatics, 2022, 23(5): bbac254.(生物信息领域顶级期刊,发表当年影响因子13.994,中科院分区一区)

[7] Liang, Jing, Hu, Zhuo (本人指导的2021级硕士)Li, Zong-Wei, Qiao, Kang-Jia, Guo, Wei-Feng*, Multi-Objective Optimization Based Network Control Principles for Identifying Personalized Drug Targets With Cancer, IEEE Transactions on Evolutionary Computation, 2023. doi: 10.1109/TEVC.2023.3303958. (计算机领域顶级期刊,发表当年影响因子 14.3,中科院一区)

[8] Liang Jing, Hu Zhuo (本人指导的2021级硕士), Li Zong-Wei, Bi Ying, Cheng Han, Guo Wei-Feng*. A novel evolutionary constrained multi-objective optimization method for identifying personalized drug targets combining with structural network control principles[C]//2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS). EI 2023.(会议最佳论文)

[9] Zhang Shao-Wu*, Wang Zhen-Nan (本人指导的2019级西北工业大学硕士), Li Yan, Guo Wei-Feng*, Prioritization of cancer driver gene with prizecollecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network, BMC Bioinformatics, 2022, 23 (341). (生物信息领域著名国际SCI期刊,发表当年影响因子3.000, JCR分区Q2)

 [10] Guo Wei-Feng, Yu Xiangtian, Shi Qian-Qian, Liang Jing*,Zhang Shao-Wu*, Zeng Tao*. Performance assessment of sample-specific network control methods for bulk and single cell biological data analysis. PLoS computational biology, 2021, 17(5):e1008962. (生物信息领域著名国际SCI期刊,发表当年影响因子4.779, JCR分区Q1)

[11] Guo Wei-Feng, Zhang Shao-Wu*, Feng Yue-Hua, Liang Jing,Zeng Tao*, Chen Luonan*. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients. Nucleic Acids Research. 2021, 49(7):e37.(生物信息领域顶级期刊,发表当年影响因子16.971,中科院分区一区)

[12] Guo Wei-Feng, Zhang Shao-Wu*, Zeng Tao*, Tatsuya Akutsu, Chen Luonan*. Network control principles for identifying personalized driver genes in cancer. Briefings in Bioinformatics, 2020, 21(5): 1641-1662.(生物信息领域顶级期刊,计算生物学Top1,发表当年影响因子8.990,中科院分区一区)

[13] Guo Wei-Feng, Zhang Shao-Wu*, Li Yan,Zeng Tao, Gao Jianxi*,Chen Luonan*. A novel network control model for identifying personalized driver genes in cancer. PLoS computational biology, 2019, 15(11):e1007520.(生物信息领域顶级期刊,发表当年影响因子4.428,中科院分区一区)

[14] Guo Wei-Feng, Zhang Shao-Wu*, Liu Li-Li, Liu Fei,Shi Qian-Qian,Zhang Lei, Tang Ying, Zeng Tao*, Chen Luonan*. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics, 2018, 34 (11): 1893-1903).(生物信息领域顶级期刊,发表当年影响因子5.481,中科院分区一区)

[15] Guo Wei-Feng, Zhang Shao-Wu*, Shi Qian-Qian, Zhang Cheng-Ming, Zeng Tao*, Chen Luonan*. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics, 2018, 19: 924. (生物信息领域著名国际SCI期刊,发表当年影响因子3.501, JCR分区Q1)

[16] Xue Han, Zhang Qingfeng, Wang Panqin, Cao Bijin, Jia Chongchong, Cheng Ben, Shi Yuhua, Guo Wei-Feng, Wang Zhenlong, Liu Ze-Xian*, Cheng Han*. qPTMplants: an integrative database of quantitative post-translational modifications in plants, Nucleic Acids Research, 2022, 50 (D1):D1491–D1499.(生物信息领域顶级期刊,发表当年影响因子19.16,中科院分区一区)

[17] Liang Jing, Qiao Kangjia, Yu Kun-Jie*, Qu Bo-Yang, Yue Cai-Tong, Guo Wei-Feng, Wang Ling. Utilizing the Relationship Between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization. IEEE Transactions Cybernetics. 2022. (计算机领域顶级期刊,发表当年影响因子 19.118,中科院一区)

[18] Qiao Kangjia, Liang Jing*, Yu Kun-Jie, Guo Wei-Feng, Yue Cai-Tong, Qu Bo-Yang. Benchmark problems for large-scale constrained multi-objective optimization with baseline results. Swarm and Evolutionary Computation, 2024, 86: 101504. (计算机领域顶级期刊,发表当年影响因子 10.000,中科院一区)

其他信息

Ø本人长期从事生物医疗大数据挖掘计算智能图信号机器学习等研究,以人工智能算法复杂疾病中的应用为导向,擅长生物网络建模、人工智能模型算法开发和多组学数据分析。招收自动化、计算机等方向的硕士研究生和学有余力的本科生欢迎对机器学习数据挖掘、生物信息算法开发、生物医学应用等感兴趣的同学报考硕士研究生!


Copyright© 2015 All Rights Reserved. 郑州大学 电气与信息工程学院

管理员登录