郭伟峰

作者: 时间:2020-06-30 点击数:

fc751549051f87bc424e46170bb2de8

郭伟峰

特聘教授、硕士生导师

电子邮箱:

guowf[at]zzu.edu.cn(请将[at]换成@)

办公室:

郑州大学电气与信息工程学院1215

研究方向:

计算智能、图信号机器学习、生物医学大数据挖掘

教育背景

Ø  2014/09-2019/12,西北工业大学,自动化学院,博士

Ø  2018/11-2019/02,京都大学化学研究所,访问学生。

Ø  2015/09-2017/12,中国科学院上海生命科学研究所,访问学生。

Ø  2013/09-2014/09,西北工业大学,自动化学院,硕士

Ø  2009/09-2013/06,华北水利水电大学,数学与信息科学学院,学士。

工作经历

Ø  2024-至今,郑州大学,电气与信息工程学院,特聘教授(青年拔尖)。

Ø  2022-2024,郑州大学,电气与信息工程学院,副教授。

Ø  2021-2022,郑州大学,电气与工程学院,副教授。

Ø  2020-2021,郑州大学,电气工程学院,讲师。

Ø  学术兼职

Ø  担任河南省生物信息学会(筹)秘书长、期刊《Genes》客座编辑2023年第十二届全国生物信息学与系统生物学大会组织委员会委员;生物信息领域Top期刊《Briefings in bioinformatics》、《Plos   computational biology》的审稿人。

奖励与荣誉

Ø  16届国际生物信息会议最佳论文 (Best   paper for BMC track in InCoB 2017)

Ø  首届ABB杯(2018)全国智能技术论文大赛优秀论文。

Ø  第五届数据驱动复杂系统优化国际会议最佳论文。

Ø  获得河南省教育厅2023年度科技成果奖二等奖。

科研项目

Ø  国家自然科学基金面上项目, 49万,主持,2025-2028

Ø  河南省自然科学基金面上项目, 10万,主持,2024-2025

Ø  数字医学工程全国重点实验室开放课题,5万,主持,2024-2025

Ø  国家自然科学青年基金, 24万,主持, 2021-2023

Ø  河南省科技厅重点研发与推广专项 (科技攻关)项目, 10万,主持,2021-2022

Ø  中国博士后科学基金面上项目, 8万,主持,2021-2022

Ø  华南肿瘤国家重点实验室开放课题,5万,2021-2022

代表文章(近5)

[1]   Liang JingHu   Zhuo (本人指导的2021级硕士) , Bi Ying,   Cheng Han, Yu Kunjie, Yue Cai-Tong, Wang Xianfang, Guo Wei-Feng*, A   Survey on Evolutionary Computation for Identifying Biomarkers of Complex   Disease, IEEE Transactions on Evolutionary Computation, doi:   10.1109/TEVC.2024.3414442. (计算机领域顶级期刊,发表当年影响因子 11.7,中科院一区)

[2]   Qiao Kangjia, Liang Jing*, Guo Wei-Feng*,Hu Zhuo, Yu Kunjie, Suganthan   Ponnuthurai Nagaratham. Knowledge-embedded constrained multiobjective   evolutionary algorithm based on structural networkcontrol principles for   personalized drug targets recognition in cancer, Information Science, 2024.   doi: 10.1016/j.ins.2024.121033 (计算机领域顶级期刊,发表当年影响因子 8.1,中科院一区)

[3] Wan   Han-Wen (本人指导的2019级本科生) , Wu   Meng-Han, Zhao Wen-Shan , Cheng Han , Bi Ying , Wang Xian-Fang, Zhang   Xiang-Rui, Li Yan , Guo Wei-Feng*. Label reusing based graph neural   network for unbalanced classification of personalized driver genes in cancer.   Applied Soft Computing, 2024, 159. (计算机领域顶级期刊,发表当年影响因子8.7,中科院分区一区)

[4]   Hu Wei, Yang houyi, Guo Weifeng*, Xiao Na, Yang Xiaopeng*, Ren   Xiangyang*. STC-UNet: Renal tumor segmentation based on enhanced feature   extraction at different network levels. BMC   Medical Imaging. 2024 (生物信息领域著名国际SCI期刊,发表当年影响因子2.900 JCR分区Q2)   

[5]   Liang, Jing, Hu, Zhuo (本人指导的2021级硕士)Li, Zong-Wei,   Qiao, Kang-Jia, Guo, Wei-Feng*, Multi-Objective Optimization Based   Network Control Principles for Identifying Personalized Drug Targets With   Cancer, IEEE Transactions on Evolutionary Computation, 2024,28(5):1322-1335. (计算机领域顶级期刊,发表当年影响因子 14.3,中科院一区)

    [6] Liang JingLi   Zong-Wei (本人指导的2020级硕士), Sun   Ze-Ning, Bi Ying, Cheng Han, Zeng Tao*, Guo Wei-Feng   *, Latent space search based multimodal optimization with personalized   edge-network biomarker for multi-purpose early disease prediction, Briefings   in Bioinformatics, 2023,24(6):bbad364.(生物信息领域顶级期刊,发表当年影响因子9.5,中科院分区一区)

[7] Liang JingLi Zong-Wei (本人指导的2020级硕士), Yue Cai-Tong, Hu Zhuo, Cheng Han, Liu Ze-Xian, Guo   Wei-Feng*, Multi-modal optimization to identify personalized   biomarkers for disease prediction of individual patients with cancer, Briefings   in Bioinformatics, 2022, 23(5): bbac254.(生物信息领域顶级期刊,发表当年影响因子13.994,中科院分区一区)

 [8] Liang Jing, Hu Zhuo (本人指导的2021级硕士), Li   Zong-Wei, Bi Ying, Cheng Han, Guo Wei-Feng*. A novel evolutionary constrained multi-objective   optimization method for identifying personalized drug targets combining with   structural network control principles[C]//2023 5th International   Conference on Data-driven Optimization of Complex Systems (DOCS). EI   2023.(会议最佳论文)

[9] Zhang Shao-Wu*, Wang Zhen-Nan (本人指导的2019级西北工业大学硕士), Li Yan, Guo Wei-Feng*, Prioritization of   cancer driver gene with prizecollecting   steiner tree by introducing an edge weighted strategy in the personalized   gene interaction network, BMC Bioinformatics, 2022, 23 (341). (生物信息领域著名国际SCI期刊,发表当年影响因子3.000 JCR分区Q2)

 [10] Guo Wei-Feng, Yu   Xiangtian, Shi Qian-Qian, Liang Jing*Zhang Shao-Wu*, Zeng Tao*. Performance assessment of   sample-specific network control methods for bulk and single cell biological   data analysis. PLoS computational biology, 2021, 17(5):e1008962. (生物信息领域著名国际SCI期刊,发表当年影响因子4.779 JCR分区Q1)

[11] Guo Wei-Feng, Zhang   Shao-Wu*, Feng Yue-Hua, Liang JingZeng Tao*, Chen Luonan*. Network   controllability-based algorithm to target personalized driver genes for discovering   combinatorial drugs of individual patients. Nucleic Acids Research.   2021, 49(7):e37.(生物信息领域顶级期刊,发表当年影响因子16.971,中科院分区一区)

[12] Guo Wei-Feng, Zhang   Shao-Wu*, Zeng Tao*, Tatsuya Akutsu, Chen Luonan*. Network control principles   for identifying personalized driver genes in cancer. Briefings in   Bioinformatics, 2020, 21(5): 1641-1662.(生物信息领域顶级期刊,计算生物学Top1,发表当年影响因子8.990,中科院分区一区)

[13] Guo Wei-Feng, Zhang   Shao-Wu*, Li YanZeng   Tao, Gao Jianxi*Chen   Luonan*. A novel network control model for identifying personalized driver   genes in cancer. PLoS computational biology, 2019, 15(11):e1007520.(生物信息领域顶级期刊,发表当年影响因子4.428,中科院分区一区)

[14] Guo Wei-Feng, Zhang   Shao-Wu*, Liu Li-Li, Liu FeiShi   Qian-QianZhang   Lei, Tang Ying, Zeng Tao*, Chen Luonan*. Discovering personalized driver   mutation profiles of single samples in cancer by network control strategy. Bioinformatics,   2018, 34 (11): 1893-1903.(生物信息领域顶级期刊,发表当年影响因子5.481,中科院分区一区)

[15] Guo Wei-Feng, Zhang   Shao-Wu*, Shi Qian-Qian, Zhang Cheng-Ming, Zeng Tao*, Chen Luonan*. A novel   algorithm for finding optimal driver nodes to target control complex networks   and its applications for drug targets identification. BMC Genomics,   2018, 19: 924. (生物信息领域著名国际SCI期刊,发表当年影响因子3.501 JCR分区Q1)

[16] Xue   Han, Zhang Qingfeng, Wang Panqin, Cao Bijin, Jia Chongchong, Cheng Ben, Shi   Yuhua, Guo Wei-Feng, Wang Zhenlong, Liu Ze-Xian*, Cheng Han*.   qPTMplants: an integrative database of quantitative post-translational   modifications in plants, Nucleic Acids Research, 2022, 50   (D1):D1491–D1499.(生物信息领域顶级期刊,发表当年影响因子19.16,中科院分区一区)

[17] Liang Jing, Qiao Kangjia, Yu   Kun-Jie*, Qu Bo-Yang, Yue Cai-Tong, Guo Wei-Feng, Wang Ling. Utilizing   the Relationship Between Unconstrained and Constrained Pareto Fronts for   Constrained Multiobjective Optimization. IEEE Transactions Cybernetics.   2022. (计算机领域顶级期刊,发表当年影响因子 19.118,中科院一区)

[18] Qiao Kangjia, Liang Jing*, Yu   Kun-Jie, Guo Wei-Feng, Yue Cai-Tong, Qu Bo-Yang. Benchmark problems   for large-scale constrained multi-objective optimization with baseline   results. Swarm and Evolutionary Computation, 2024, 86: 101504. (计算机领域顶级期刊,发表当年影响因子 10.000,中科院一区)

其他信息

Ø  本人长期从事生物医疗大数据挖掘、计算智能、图信号机器学习等研究,以人工智能算法在复杂疾病中的应用为导向,擅长生物网络建模、人工智能模型与算法开发和多组学数据分析。招收自动化、计算机等方向的硕士研究生和学有余力的本科生欢迎对机器学习、数据挖掘、生物信息算法开发、生物医学应用等感兴趣的同学报考硕士研究生!

 

Copyright© 2015 All Rights Reserved. 郑州大学 电气与信息工程学院

管理员登录