师资队伍

您当前所在位置是: 首页 > 师资队伍 > 博导风采 >

杨志坚教授

发布日期:2016-03-29     作者: admin     浏览数:    分享到:

 

姓名:杨志坚

研究方向:非线性发展方程、无穷维动力系统

箱:yzjzzvt@zzu.edu.cn,yzjzzut@tom.com

 

个人简介

杨志坚,郑州大学理学博士,日本九州大学数理学博士,郑州大学2级教授,博士生导师,河南省跨世纪学术、技术带头人,河南省数学会常务理事。现任美国 Mathematical Reviews》评论员,《Journal of Partial Differential Equations期刊编委。主要研究非线性发展方程的整体适定性及对应的无穷维耗散动力系统的长时间动力学行为。主持完成国家自然科学基金面上项目3项;河南省自然科学基金面上项目6项。自1996年以来已在J. Differential Equations》、《Nonlinearity》、《Commun. Contemp. Math.》、《Discrete Contin. Dyn. Syst. -A, -B》、《Appl. Math. Lett.》、《Advances in Differential Equations》、《Applied Mathematics & Optimization》、《Nonlinear Analysis》、《J. Math. Anal. Appl.》、《Comm. Pure Appl. Anal.》、《Math. Meth. Appl. Sci.》、《J. Math. Phys.》、《Dynamics of Partial Differential Equations》、《Evolution Equation and Control Theory》、《中国科学》等国内外SCI期刊上发表研究论文70多篇。获得河南省科技进步二等奖1项。

 

获奖情况

  1.  项目:流体力学与粘弹性力学中的非线性模型方程获河南省科技进步二等奖 . 第一完成人(2000)

  2. 项目:非线性高阶发展方程--物理与力学中的若干模型方程” 获得化学工业部科技进步三等奖. 第一完成人(1997)

  3. 项目:数学与应用数学特色专业建设的研究与实践获得河南省教学成果二等奖。第一完成人(2013

  4. 获得河南省自然科学学术奖优秀论文一等奖3项;河南省教育厅优秀科技论文一等奖2项。

 

科研成果

一、科研项目

  1. 国家自然科学基金面上项目:非线性高阶发展方程的整体适定性和长时间动力学行为,2017.1—2020.12.

  2. 国家自然科学基金面上项目:非线性高阶发展方程中的若干问题, 2013.1—2016.12.

  3. 国家自然科学基金面上项目:非线性高阶发展方程的理论及其应用,2010.1—2012.12.

  4. 河南省基础与前沿技术研究计划项目:非线性高阶发展方程的长时间行为研究,2009.1—2011.12.

  5. 国家留学基金委员会中国政府派遣研究员项目:非线性高阶发展方程的渐近行为,2005.10--2006.10.

二、科研论文

2021

  1. Yanan Li, Zhijian Yang*, Strong attractors and their continuity for the semilinear wave equations with fractional damping, Advances in Differential Equations, 26 (1-2) (2021) 45-82.

  2. Pengyan Ding, Zhijian Yang*, Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping, J. Math. Anal. Appl. 496 (2021) 124785

  3. Pengyan Ding, Zhijian Yang*,Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on R^N , Comm. Pure Appl. Anal., (2021)  doi:10.3934/cpaa.2021006

  4. Yanan Li, Zhijian Yang* , Na Feng, Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst.-B, doi:10.3934/dcdsb.2021018

  5. Yanxia Qv, Zhijian Yang*, Upper semicontinuity of strong attractors for the Kirchhoff wave model with structural nonlinear damping, Math.Meth. Appl. Sci., (2021) doi: 10.1002/mma.7209

  6. 丁鹏燕,杨志坚*,赵雅娟,具结构阻尼的拟线性薄膜方程的吸引子及其上半连续性,中国科学:数学2021,51(2):315-332.

2020

  1. Yanan Li, Zhijian Yang*, Optimal attractors of the Kirchhoff wave model with structural nonlinear dampingJ. Differential Equations, 268 (2020) 7741–7773.

  2. anan Li, Zhijian Yang*, Pengyan Ding, Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping, Appl. Math. Lett., 104 (2020)106258.

  3. Yanan Li, Zhijian Yang*, Robustness of attractors for non-autonomous Kirchhoff wave models with strong nonlinear damping, Applied Mathematics & Optimization, (2020)https://doi.org/10.1007/s00245-019-09644-4

  4. Na Feng, Zhijian Yang*, Well-posedness and attractor on the 2D Kirchhoff–Boussinesq models, Nonlinear Analysis, 196 (2020) 111803.

  5. Zhiming Liu, Zhijian Yang*, Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness, Discrete Contin. Dyn. Syst.-B, 25 (1) (2020) 223–240.

  6. Zhijian Yang*, Na Feng, Yanan Li, Robust attractors for a Kirchhoff-Boussinesq type equation, Evolution Equation and Control Theory, 9 (2) (2020) 469-486.

 2019

  1. Zhijian Yang*, Pengyan Ding, Xiaobin Liu, Attractors and their stability on Boussinesq type equations with gentle dissipation, Comm. Pure Appl. Anal.,18 (2) ( 2019) 911-930.

  2. Pengyan Ding, Zhijian Yang*, Attractors for the strongly damped Kirchhoff wave equation on R^N, Comm. Pure Appl. Anal., 18 (2) (2019) 825-843.

  3. Zhijian Yang*, Fang Da, Stability of attractors for the Kirchhoff wave equation with strong damping and critical nonlinearities, J. Math. Anal. Appl. 469 (2019) 298–320.

  4. Yanan Li, Zhijian Yang*, Fang Da, Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping, Discrete Contin. Dyn. Syst.-A 39(2019) 5975-6000.

  5. Zhijian Yang, Yanan Li, Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations, Discrete Contin. Dyn. Syst.- B 24 (2019) 4899-4912.

2018

  1. Zhijian Yang, Zhiming Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential Equations 264 (2018) 3976–4005.

  2. Zhijian Yang,Yanan Li,Criteria on the existence and stability of pullback exponential attractors  and their applications to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018) 2629-2653.

  3. Zhijian Yang, Zhiming Liu, Global attractor of the quasi-linear wave equation with strong damping, J. Math. Anal. Appl., 458 (2018) 1292–1306.

  4. Pengyan Ding, Zhijian Yang*, Yanan Li,Global attractor of the Kirchhoff wave models withstrong nonlinear damping, Appl. Math.Lett. 76 (2018) 40–45.

2017

  1. Zhijian Yang, Zhiming LiuLongtime dynamics of the quasi-linear wave equations with structural damping and supercritical nonlinearities, Nonlinearity 30 (2017) 1120–1145

  2. Zhijian Yang, Zhiming Liu,  Global attractor for a strongly damped wave equation with fully supercritical nonlinearities:, Discrete Contin. Dyn. Syst.:A, 37 (2017) 2181-2205.

  3. Zhijian Yang, Zhiming Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Applied Mathematics Letters 69 (2017) 22–28.

  4. Zhijian Yang, Pengyan Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Analysis 161 (2017) 108–130.

2016

  1. Zhijian Yang, Zhiming Liu, Panpan Niu,  Exponential attractor for the wave equation with structural damping and supercritical exponent, Communications in Contemporary Mathematics, (2016) 1550055.

  2. Zhijian Yang, Pengyan Ding, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on R^N , J. Math. Anal. Appl. 434 (2016) 1826-1851.

  3. Zhijian Yang, Pengyan Ding, Lei Li, Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl. 442 (2016) 485–510

  4. Zhijian Yang, Zhiming Liu, Na Feng, Longtime behavior of the semilinear wave equation with gentle dissipation, Discrete Contin. Dyn. Syst.: A, 36 (11) (2016) 6557-6580.

2015

  1. Zhijian Yang, Zhiming LiuExponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Appl. Math. Lett. 46 (2015) 127–132.

  2. Zhijian Yang, Na Feng, To Fu Ma, Global attractor for the generalized double dispersion equation, Nonlinear Analysis 115 (2015) 103–116.

  3. L.H.Fatori, M.A.Jorge Silva, T.F.Ma, Zhijian Yang,  Long-time behavior of a class of thermoelastic plates with nonlinear strain, J. Differential Equations 259 (2015) 4831–4862.

  4. Ke Li and Zhijian Yang, Asymptotic behavior for the singularly perturbed damped Boussinesq equation, Math. Meth.  Appl. Sci., 38 (2015) 1557-1567.

2014

  1. Zhijian Yang, Pengyan Ding, Zhiming Liu,Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearityAppl. Math. Lett., 33 (2014) 12–17

2013

  1. Zhijian Yang, On an extensible beam equation with nonlinear damping and source terms,  J. Differential Equations, 254 (2013) 3903–3927.

  2. Zhijian Yang, Longtime dynamics of the damped Boussinesq equation, J. Math. Anal. Appl. 399 (2013) 180–190.

  3. Ke  Li, Zhijian Yang, Exponential attractors for the strongly damped wave equation, Applied Mathematics and Computation 220 (2013) 155–165.

  4. Zhijian Yang, Ke  Li, Longtime dynamics for an elastic waveguide model,  Discrete Contin. Dyn. Syst., (Supple)  (2013)  797-806.

2012

  1. Zhijian Yang,  Finite-dimensional attractors for the Kirchhoff models with critical exponents, J. Mathematical Physics, 53 (2012) 032702.

2011

  1. Zhijian Yang, A global attractor for the elastic waveguide model in , Nonlinear Analysis 74 (2011) 6640–6661.

  2. Zhijian Yang, Xiao Li, Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation, J. Math. Anal. Appl. 375 (2011) 579–593.

2010

  1. Zhijian Yang, Yunqing Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations 249 (2010) 3258–3278.

  2. Zhijian Yang, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models, J. Mathematical Physics, 51:1 (2010) 032701.

  3. Zhijian Yang,  Finite-dimensional attractors for the Kirchhoff models, J. Mathematical Physics,51 (2010) 092703.

  4. Changming Song, Zhijian Yang, Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation,  Math. Meth. Appl. Sci. 2010, 33 563–575

2009

  1. Zhijian Yang, Baoxia Jin,  Global attractor for a class of Kirchhoff models, J. Mathematical Physics, 2009, 50 (3) 032701.

  2. Zhijian Yang, Global attractor for a nonlinear wave equation arising in elastic waveguide model,  Nonlinear Analysis 70 (2009) 2132–2142.

  3. Zhijian Yang, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Meth. Appl. Sci., 32: 1082-1104 (2009)

  4. Changming Song, Zhijian Yang, Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, 6: 4 (2009) 367-383.

2008

  1. Zhijian Yang, Boling Guo,  Cauchy problem for the multi-dimensional Boussinesq type equation, J. Math. Anal. Appl., 2008, 340: 64-80.

2007

  1. Zhijian Yang, Longtime behavior of the Kirchhoff type equation with strong damping on, J. Differential Equations, 2007, 242: 269-286.

  2. M. Nakao, Zhijian Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.

2006

  1. Zhijian Yang, Cauchy problem for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl., 2006, 320: 859-881.

  2. Zhijian Yang, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, J. Math. Anal. Appl.,  2006, 313: 197-217.

2005

  1. Zhijian Yang,  Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.

2004

  1. Zhijian Yang,  Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms,J. Math. Anal. Appl.,  2004, 300: 218-243.

2003

  1. Zhijian Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J.Differential Equations, 2003, 187:520-540.

  2. Zhijian Yang,  Xia Wang,  Blowup of solutions for improved Boussinesq type equation, J. Math. Anal. Appl.,  2003, 278: 335-353.

  3. Zhijian Yang,  Xia Wang, Blowup of solutions for the “bad” Boussinesq-type equation, J. Math. Anal. Appl.,  2003, 285: 2, 282-298.

  4. Zhijian Yang,  Guowang Chen,  Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl.,  2003, 285: 2, 606-620.

  5. Zhijian Yang, Initial boundary value problem for a class of nonlinear strongly damped wave equation, Math. Meth. Appl. Sci., 2003, 26 (12): 1047-1066.

2002

  1. Zhijian Yang,  On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation, Nonlinear Anal. 2002, 51(7): 1251-1263.

  2. Zhijian Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Math. Meth. Appl. Sci., 2002, 25: 795-814.

  3. Zhijian Yang, Blowup of solutions for a class of evolution equations with nonlinear damping and source terms, Math. Meth. Appl. Sci., 2002, 25: 825-833.2000

  4. Guowang Chen, Zhijian Yang,  Existence and non-existence of global solutions for a class of non- linear wave equations,Math. Meth. Appl. Sci., 2000, 23: 615-631.

  5. Zhijian Yang, Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation, Math. Meth. Appl. Sci., 1998, 21: 1467-147.

  6. Zhijian Yang, Changming Song,  Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.

  7. Guowang Chen, Jiasheng, Xing,  Zhijian Yang, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis, 1996, 26: 1255-1270. 

上一篇:陈绍春教授 下一篇:曹策问教授