
Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Parameters identification of photovoltaic models using an improved JAYA
optimization algorithm

Kunjie Yua, J.J. Lianga,⁎, B.Y. Qub, Xu Chenc, Heshan Wanga

a School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
b School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
c School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China

A R T I C L E I N F O

Keywords:
Photovoltaic model
Parameter identification
Optimization problem
JAYA algorithm

A B S T R A C T

Parameters identification of photovoltaic (PV) models based on measured current-voltage characteristic curves is
significant for the simulation, evaluation, and control of PV systems. To accurately and reliably identify the
parameters of different PV models, an improved JAYA (IJAYA) optimization algorithm is proposed in the paper.
In IJAYA, a self-adaptive weight is introduced to adjust the tendency of approaching the best solution and
avoiding the worst solution at different search stages, which enables the algorithm to approach the promising
area at the early stage and implement the local search at the later stage. Furthermore, an experience-based
learning strategy is developed and employed randomly to maintain the population diversity and enhance the
exploration ability. A chaotic elite learning method is proposed to refine the quality of the best solution in each
generation. The proposed IJAYA is used to solve the parameters identification problems of different PV models,
i.e., single diode, double diode, and PV module. Comprehensive experiment results and analyses indicate that
IJAYA can obtain a highly competitive performance compared with other state-of-the-state algorithms, espe-
cially in terms of accuracy and reliability.

1. Introduction

To tackle the issues of climate change, global warming, and deple-
tion of classical fossil fuels, increasing attention has been focused on the
utilization of renewable energy sources. Solar energy can be generally
presented as a promising alternative of inexhaustible and clean sources
[1]. Solar energy is converted into electrical energy through photo-
voltaic (PV) systems such as solar cell. PV systems usually operate in
harsh outdoor environment and their PV arrays are easy to be dete-
riorated, which greatly affect the solar energy utilization efficiency [2].
Hence, in order to control and optimize PV systems, it is vital to eval-
uate the actual behavior of PV arrays in operation using accurate model
based on measured current-voltage data. There are several mathema-
tical models that successfully describe the performance and nonlinear
behavior of PV systems. The most common and widely adopted models
are the single diode model and double diode model [3]. The accuracy of
PV models mainly depends on their model parameters. However, these
parameters usually are unavailable and change due to aging, faults, and
volatile operating conditions. Hence, the accurate identification for
parameters is indispensable to the simulation, evaluation, and control
of PV systems, and various parameter identification methods have been

developed over recent years [4,5].
Some attempts have been devoted to using deterministic techniques

for parameter identification based on minimization of a suitably chosen
function [6–8]. However, deterministic techniques impose various
model restrictions such as differentiability and convexity in order to be
correctly applied. Besides, since the parameter identification of PV
models is a non-linear and multi-modal problem, leading to high
probability of falling in local optimal when employing deterministic
techniques.

As a promising alternative to deterministic techniques, heuristic
methods inspired by various natural phenomenon have been widely
used to identify parameters of PV models. They impose no restrictions
on the problem characteristic, thus can be easily implemented for
various real-world problems. In [9], a penalty based differential evo-
lution (P-DE) was proposed for estimating the parameters of solar PV
modules at different environmental conditions. In [10], an improved
adaptive DE (IADE) based parameter estimation method was developed
by introducing the new formulas for scaling factor and crossover rate.
In [11], artificial bee swarm optimization (ABSO) was used to identify
the solar cell parameters. In [12], bacterial foraging algorithm was
proposed to model the solar PV characteristics accurately. In [13], a
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biogeography-based optimization with mutation strategies (BBO-M)
was developed by incorporating the mutation of DE and chaos theory
into the BBO structure. BBO-M was first tested on benchmark functions,
and then applied to the model parameter estimation of solar cell. In
[14], an improved and simplified teaching-learning-based optimization
(STLBO) with an elite strategy and a local search was designed for
identifying the parameters of proton exchange membrane fuel and solar
cells. In [15], TLBO was implemented by developing an interactive
numerical simulation and then applied to the reported current-voltage
data of different types of solar cells. In [16], a mutative-scale parallel
chaos optimization algorithm (MPCOA) employing crossover and
merging operation was developed for solving the designed parameter
estimation problem. In [17], artificial bee colony (ABC) was utilized to
extract the parameters of solar cells accurately. In [18], bird mating
optimizer (BMO) was simplified and then employed to estimate the
parameters of module model at different operation conditions. In [1], a
DE with integrated mutation per generation (DEIM) was developed to
identify the unknown parameters of double diode PV module model. In
[19], the performance of six bio-inspired optimization algorithms were
compared on the parameters identification of single diode model. In
[20], month flame optimizer (MFO) was developed for the parameters
estimation of three diode model. In [21], a generalized oppositional
TLBO (GOTLBO) was proposed by introducing the generalized opposi-
tion-based learning into the initial step and generation jumping, and
then used to extract the parameters of solar cell models. In [22], five
different versions of the bacterial foraging algorithm (BFA) were de-
veloped to extract the parameters of PV module from nameplate data.
In [23], a time varying acceleration coefficients particle swarm opti-
mization (TVACPSO) was developed for estimating parameters of PV
cells and modules. Although these attempts have achieved satisfied
results, the performance of aforementioned algorithms are affected by
their algorithm-specific or introduced parameters. It is difficult for users
to set the appropriate parameters for a specific or new optimization
problem, and the inappropriate tuning of parameters either increase the
computational burden or achieve the local optimal solution.

JAYA algorithm is a new yet powerful heuristic method proposed by
Rao for constrained and unconstrained optimization problems [24]. It
does not require any algorithm-specific parameter except two common
parameters namely the population size and the number of generation.

Different from JAYA, many other algorithms require the algorithm-
specific parameters in addition to common parameters. For example,
DE requires the scaling factor and crossover probability, and PSO needs
the inertia weight and acceleration coefficients. Hence, a significant
benefit of JAYA algorithm can be achieved in terms of omitting the
difficulty of adjusting parameters and decreasing the time necessary for
conducting optimization process. Although TLBO algorithm is also free
from algorithm-specific parameters, it requires two phases (i.e. teacher
phase and learner phase) per generation, leading to two function eva-
luations (FE) for each individual in each generation. Thus, the com-
putation cost of TLBO in a single generation is larger than that of an
algorithm with one FE per generation. Unlike TLBO, JAYA algorithm
needs only one phase, thus making it less computation time and im-
plementation complexity. JAYA has been improved and widely applied
to various real-world optimization problems such as thermal devices
[25], two-area interconnected linear power system [26], modern ma-
chining processes [27], optimum power flow problem [28], heat ex-
changers [29–31], coefficients optimization of proportional plus in-
tegral controller [32], constrained mechanical design optimization
[33], machining performance optimization during the tuning operation
of CFRP composites [34], dimensional optimization of a micro-channel
heat sink [35], and other problems [36,37]. However, as a new algo-
rithm, JAYA has some disadvantages. The first is that there is only
guidance as approach to the best solution and avoid the worst solution,
although the convergence rate is accelerated, the population diversity
may not be maintained efficiently, leads to local optimal solution. The
second is that no strategy is used to improve the best solution during
each generation, may result in the poor quality of final solution. Be-
sides, to the best of our knowledge no attempts to employ JAYA in
solving the parameter identification problems of PV models have been
reported in the literature.

In this paper, an improved JAYA (IJAYA) algorithm is proposed to
identify the parameters of PV models accurately and reliably. In IJAYA,
a self-adaptive weight determined by the best and worst function values
is introduced to adjust the tendency of approaching the best solution
and avoiding the worst solution. This weight assists the algorithm to
approach the potential area at the early stage and implement the local
search at the later stage. In addition, a learning strategy based on the
experience of other individuals is developed and used randomly to

Nomenclature

Id diode current (A)
Id1 first diode current (A)
Id2 second diode current (A)
Iph photocurrent (A)
IL cell output current (A)
Isd reverse saturation current of diode (A)
Isd1 diffusion current (A)
Isd2 saturation current (A)
Ish shunt resistor current (A)
n diode ideal factor
n1 diffusion diode ideal factor
n2 recombination diode ideal factor
k Boltzmann constant
q electron charge
Np the number of solar cells in parallel
Ns the number of solar cells in series
N the number of experimental data
RS series resistance (Ω)
Rsh shunt resistance (Ω)
T temperature of junction (K)
VL cell output voltage (V)
Vt junction thermal voltage (V)

NP population size
D dimension of problem
Gmax the maximal number of generation
Max_FES the maximal number of function evaluations
RMSE root mean square error
SD standard deviation
IJAYA improved JAYA
LETLBO teaching-learning-based optimization with learning ex-

perience
GOTLBO generalized oppositional teaching-learning-based optimi-

zation
LBSA learning backtracking search algorithm
CLPSO comprehensive learning particle swarm optimizer
BLPSO biogeography-based learning particle swarm algorithm
DE/BBO differential evolution with biogeography-based optimiza-

tion
CMM-DE/BBO DE/BBO with covariance matrix based migration
ABSO artificial bee swarm optimization
IADE improved adaptive differential evolution
IGHS innovative global harmony search
PS pattern search
SA simulated annealing
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enhance the population diversity efficiently. A chaotic learning is em-
ployed to improve the quality of the best solution in each generation. In
order to verify the effectiveness of the proposed IJAYA algorithm, it is
compared with other well-established algorithms on parameters iden-
tification problems of different PV models, i.e., single diode, double
diode, and PV module. Experimental results and analyses demonstrate
that IJAYA exhibits superior performance in terms of accuracy and
reliability. Thus, IJAYA can be an effective alternative for other com-
plex optimization problems of PV systems.

The main contributions of this study are as follows:

(1) IJAYA algorithm is proposed for the parameters identification of PV
models. In IJAYA, a self-adaptive weight is introduced to purpose-
fully adjust the tendency of approaching the best solution and
avoiding the worst solution at different search stages.

(2) An experience-based learning method is designed and implemented
randomly to improve the population diversity efficiently.

(3) A chaotic elite learning strategy is proposed to refine the quality of
the best solution in each generation.

(4) The effectiveness of IJAYA is demonstrated through comprehensive
experiments and comparisons on parameters identification pro-
blems of different PV models.

The rest of this paper is organized as follows. The problem for-
mulation of PV models is given in Section 2. Basic JAYA algorithm is
introduced in Section 3. The proposed IJAYA algorithm is presented in
Section 4. The experimental results on different PV models are shown
and analyzed in Section 5. Finally, the conclusions are given in Section
6.

2. Problem formulation

In the literature, there are several PV models that describe the
current-voltage characteristics of the solar cells and PV module. In
practice, the most commonly used ones are the single diode model and
double diode model. These models and their objective functions are
introduced in this section.

2.1. Solar cell model

2.1.1. Single diode model
Single diode model has been widely used to represent the static

characteristic of solar cell because of simplicity and accuracy [3]. This
model includes a current source in parallel with a diode, a shunt resistor
to represent the leakage current, and a series resistor to denote the
losses of load current. The equivalent circuit of this model is presented
in Fig. 1(a) and the output current is calculated as follows:

= − −I I I IL ph d sh (1)
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whereIL is the solar cell output current, Iph is the total current generated
by solar cell, Id is the diode current calculated by Shockley Eq. (2),
andIsh is the shunt current calculated by Eq. (3). RS andRsh are the series
and shunt resistances, respectively. VL is the cell output voltage, Isd is
the reverse saturation current of diode. n is the diode ideal factor. k is
the Boltzmann constant ( × −1.3806503 10 23 J/K), q is the electron charge
( × −1.60217646 10 19 C), and T is the cell absolute temperature in Kelvin.
Hence, by combining Eqs. (2) and (3), the output current shown in Eq.
(1) can be rewritten as:
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Therefore, for this single diode model, five unknown parameters
I I R R n( , )ph sd S sh are needed to be estimated. Accurate identification of
these parameters is vital to reflect the solar cell performance, this can
be achieved by an optimization technique.

2.1.2. Double diode model
Double diode model is developed by considering the effect of re-

combination current loss in the depletion region [21]. In this model,
there are two diodes in parallel with the current source and a shunt
resistance. The equivalent circuit is shown in Fig. 1(b), and the output
current can be described as follows:
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whereIsd1 and Isd2 are the diffusion and saturation currents, respectively.
n1 and n2 are the diffusion and recombination diode ideal factors, re-
spectively. The other terms are introduced previously. Thus, for this
double diode model, seven unknown parameters I I I R R n n( , , , )ph sd sd S sh1 2 1 2
are needed to be identified to obtain the actual behavior of solar cell.

2.2. PV module model

As shown in Fig. 1(c), the single diode PV module model that con-
sists of several solar cells connected in series and/or in parallel. The
output current can be expressed as follows:
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whereNp represents the number of solar cells in parallel; while NS re-
presents the number of solar cells in series. Same as to the single diode
model, five unknown parameters I I R R n( , )ph sd S sh are required to be es-
timated.

2.3. Objective function

The parameters identification problem of PV models is usually
converted into as an optimization problem, and the goal is to minimize
the difference between the experimental data and simulated data ob-
tained by estimated parameters. The error function for each pair of
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(a) (b) (c)

Fig. 1. Schematics for (a) single diode, (b) double diode,
and (c) PV module.
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experimental and simulated current data point is defined by Eqs. (7)
and (8) for single diode model and double diode model, respectively.
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In this study, the root mean square error (RMSE) defined by Eq. (9) is
used as the objective function to quantify the overall difference be-
tween the experimental and simulated current data, the objective
function has been widely used in literature [10,11,14,21]. The opti-
mization problem is to minimize the objective function xRMSE( ) by
searching the solution vector x within the specified range.

∑=
=N

f V Ix xRMSE( ) 1 ( , , )
k

N

k L L
1

2

(9)

wherex is the solution vector consists of unknown parameters, N is the
number of experimental data.

3. JAYA algorithm

JAYA algorithm is a new population-based optimization algorithm
developed by Rao for solving constrained and unconstrained optimi-
zation problems. The conceptual background of JAYA is that one so-
lution obtained for a specific problem should approach to the optimal
solution and evade the inferior solution simultaneously [24]. Unlike
most other population-based algorithms, JAYA is free from algorithm-
specific parameters, and involves only two common parameters like
population size and the number of generation.

For an objective function f x( ) with D dimensional variables
= …j D( 1,2, , ), xi j, is the value of the jth variable for the ith candidate

solution, thus = …x x xx ( , , , )i i i i D,1 ,2 , is the position of ith candidate solu-
tion. The best candidate solution = …x x xx ( , , , )best best best best D,1 ,2 , has the
best value of f x( ) in the current population, while the worst candidate
solution = …x x xx ( , , , )worst worst worst worst D,1 ,2 , has the worst value of f x( ) in
the current population. Then, xi j, is updated using Eq. (10).

′ = + − − −x x rand x x rand x x·( | |) ·( | |)i j i j best j i j worst j i j, , 1 , , 2 , , (10)

where xbest j, and xworst j, are the values of the jth variable for the best and
worst solutions, respectively. ′xi j, is the updated value of xi j, , and x| |i j, is
the absolute value of xi j, . rand1 and rand2 are two uniformly distributed
random numbers within [0,1]. In Eq. (10), the term −rand x x·( | |)best j i j1 , ,
represents the tendency of the solution attracted by the best solution,
and the term − −rand x x·( | |)worst j i j2 , , indicates the tendency of the solution
to shun the worst solution. The updated solution ′ = ′ ′ … ′x x xx ( , , , )i i i i D,1 ,2 , is
accepted if it gives a better function value.

In the searching process, one solution obtained by JAYA algorithm
is moving closer to the best solution and moving away from the worst
solution. JAYA algorithm strives to become victory by approaching the
best solution and thus it is named as JAYA (a Sanskrit word meaning
victory) [33].

4. Improved JAYA algorithm

The improved JAYA (IJAYA) algorithm is presented in this section.
Three main improvements exist in IJAYA. First, a self-adaptive weight
is introduced to adjust the tendency of approaching the best solution
and avoiding the worst solution. Second, a learning strategy based on
the experience of other individuals is developed and employed

randomly to maintain the population diversity. Third, chaotic learning
method is proposed to improve the quality of the best solution in each
generation. The core idea behind IJAYA is elucidated as follows.

4.1. Self-adaptive weight

In the searching process of JAYA, it is expected that the population
should approach the promising region of search space at the early stage,
and at the later stage, the local search in promising area should be
implemented to refine the quality of population. To this end, a weight
presented in Eq. (11) is introduced to adjust the degree of approaching
the best solution and avoiding the worst solution. Then, Eq. (10) is
replaced by Eq. (12) by adding the weight.

=
⎧
⎨
⎩

≠( )w f x, if ( ) 0

1, otherwise

f
f worst

x
x
( )

( )

2
best

worst

(11)

′ = + − − −x x rand x x w rand x x·( | |) · ·( | |)i j i j best j i j worst j i j, , 1 , , 2 , , (12)

where f x( )best and f x( )worst are the objective function values of the best
solution and worst solution, respectively.

It can be observed that the introduced weight is self-adaptive and its
value increases gradually, since the difference of function values be-
tween the best and worst solutions is becoming smaller as the search
process. Therefore, the promising region can be located at the early
stage due to the degree of approaching the best solution is relatively
larger, while at the later stage, the local search in promising region can
be achieved since the degree of approaching the best solution and
avoiding the worst solution are similar. In addition, the weight w is
determined automatically, and thus no additional parameter need to be
tuned is introduced.

4.2. Experience-based learning strategy

In JAYA algorithm, the population is updated by considering the
best solution and worst solution simultaneously, this method can ac-
celerate the convergence rate and increase the exploitation capability of
the algorithm. However, the population diversity and the exploration
capability of the algorithm may be deteriorated with the prompt con-
vergence rate. Hence, a learning strategy based on the experience of
other solutions is developed to enhance the population diversity and
thus increase the exploration ability. To be specific, other two in-
dividuals xk and xl are randomly selected from the population, then the
potential search direction determined by them is used to update the
current individual x ,i as shown in Eq. (13).

′ = ⎧
⎨⎩

+ − <
+ −

x
x rand x x iff f
x rand x x

x x·( ), ( ) ( )
·( ), otherwisei j

i j k j l j k l

i j l j k j
,

, , ,

, , , (13)

wherexk j, and xl j, are the values of the jth variable for the k and l in-
dividuals ≠ ≠k l i( ), respectively. rand is a random number in the
range [0, 1].

In order to balance the exploration and exploitation abilities of
search process, the above experience-based learning strategy Eq. (13)
and the introduced weight Eq. (12) are employed randomly for each
individual in this study.

4.3. Chaotic elite learning method

During the search process, the best solution plays an important role
since it guides and draws other individuals to its own region. However,
the best individual may be located in a local optimum when solving
multimodal problem. In this case, other individuals may be easily at-
tracted to the best individual region, leading to premature convergence.
To alleviate the issue, the learning method based on chaotic sequence is
introduced to refine the quality of the best solution. Chaotic sequence
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features randomicity and ergodicity, and this very helpful for further
improving the quality of one solution by generating new solution
around it [13,14,38]. The chaotic sequence used in this study is the
well-known logistic map defined by Eq. (14). Then, the best solution is
updated using Eq. (15).

= −+z z z4· ·(1 )m m m1 (14)

′ = + −x x rand z·(2· 1)best j best j m, , (15)

where m is the iteration number, zm is the value of mth chaotic itera-
tion, and the initial value z0 is randomly generated within [0, 1]. ′xbest j,
is the updated value of jth variable for the best solution. The updated

best solution is accepted if it gives a better function value.

4.4. Framework of IJAYA

Based on abovementioned descriptions, the pseudo code of IJAYA
algorithm can be summarized in Algorithm 1. Moreover, the flow chart
of IJAYA is shown in Fig. 2. It can be seen that the structure of IJAYA is
simple as that of original JAYA, and no any additional parameter needs
to be tuned is introduced in the IJAYA. That is, IJAYA is also free from
algorithm-specific parameter. In addition, IJAYA and JAYA have the
same complexityO G NP D( · · ),max whereGmax is the maximal number of
generation

Initialize population

Calculate the function value
of each solution

Identify the best solution and
the worst solution

ix

bestx

worstx

is the best solutionix bestx

( | , ~ (0,1))a b a b U

Update the solution
by Eq. (12)

Update the solution
by Eq. (13)

Update the best
solution by Eq. (15)

Yes

YesNo

No

The new solution better than
the old solution

New solution
replaces the old one

Remain the old
solution

NoYes

Termination criteria satisfied

End

Yes

No

Begin

i=1

i=i+1

population sizeiYes

No

Fig. 2. The flow chart of IJAYA algorithm.
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Algorithm 1. Pseudo code of IJAYA algorithm

Initialize population size (NP) and maximum number of function
evaluations (Max_FES). Generate the initial population
randomly;

Evaluate the objective function value for each individual;
FES = NP;
While FES < Max_FES do
Choose the best individualxbest and the worst individualxworst from
population;
For i = 1 to NP do

If xi is not the best individualxbest then
If < ∼a b a b U( | , (0,1)) then //∗ Self-adaptive weight ∗//

Calculate the weight w using Eq. (11);
Update the jth = …j D( 1,2, , ) variable value of xi using Eq.

(12);
Else //∗Experience-based learning strategy∗//

Select the other two individualsxr1 andxr2 from population
randomly ≠ ≠r r i( 1 2 );

Update the jth = …j D( 1,2, , ) variable value of xi using Eq.
(13);

End if
Else //∗ Chaotic elite learning method ∗//
Update the jth = …j D( 1,2, , ) variable value of xbest using Eq.

(15);
End if
Calculate the function value for the updated individual;
FES = FES + 1;
Accept the new solution if it is better than the old one

End for
End while

Table 1
Parameters range for the single and double diode models, and PV module model.

Parameter Single diode/double diode PV module

Lower bound Upper bound Lower bound Upper bound

I (A)ph 0 1 0 2

I I I, , (μA)sd sd sd1 2 0 1 0 50
R (Ω)S 0 0.5 0 2
R (Ω)sh 0 100 0 2000
n n n, ,1 2 1 2 1 50

Table 2
Parameter settings for the involved algorithms.

Algorithm Parameters

IJAYA NP = 20.
JAYA NP = 20.
GOTLBO [21] NP = 50, jumping rate Jr= 0.3.
LETLBO [40] NP = 50.
LBSA [41] NP = 50, mix rate = 1.
CLPSO [42] NP = 40, inertia weight w:0.9–0.2, acceleration coefficient

c = 1.49445, refreshing gap m= 5.
BLPSO [43] NP = 40, inertia weight w:0.9–0.2, acceleration coefficient

c = 1.49445, I= E=1.
DE/BBO [44] NP = 100, I = E=1, =π 0.005max , K = 2, F = rand

(0.1,1), CR = 0.9.
CMM-DE/BBO [45] NP = 100, I = E=1, =π 0.005max , K = 2, F = rand

(0.1,1), CR = 0.9, Pe = 0.5.

Table 3
Comparison among different algorithms on single diode model.

Fig. 3. Comparisons between experimental data and simulated data obtained by IJAYA for single diode model (a) I-V characteristics; (b) P-V characteristics.
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5. Experimental results and analysis

In this section, the effectiveness of IJAYA is evaluated on para-
meters identification of different PV models, i.e., single diode, double
diode, and PV module. To this end, the benchmark experimental cur-

rent-voltage data of a solar cell and a solar module are used. The data
are acquired from [39], where a 57 mm diameter commercial RTC
France silicon solar cell (under 1000 W/m2 at 33 °C) and a solar module
named Photowatt-PWP201(under 1000 W/m2 at 45 °C) that consists of
36 polycrystalline silicon cells in series. This data set has been widely
used to test the techniques developed for parameters extraction
[2,13,14,21]. To ensure a fair comparison, the lower and upper bounds
for each parameter are shown in Table 1, which are the same as used in
previous literatures.

To validate the superior performance of the proposed IJAYA algo-
rithm, comparisons are carried out with other well-established algo-
rithms. These algorithms are the basic JAYA [24], generalized opposi-
tional TLBO (GOTLBO) [21], TLBO with learning experience of other
learners (LETLBO) [40], learning backtracking search algorithm (LBSA)
[41], comprehensive learning PSO (CLPSO) [42], biogeography-based
learning PSO (BLPSO) [43], hybrid DE with BBO (DE/BBO) [44], and
DE/BBO with covariance matrix based migration (CMM-DE/BBO) [45].
For fair comparison, all of the algorithms use the same maximum
number of function evaluations (Max_FES) 50000 in each run for each
problem. Besides, each algorithm is tested 30 times independently for
every problem to minimize statistical errors. The parameter config-
urations for all compared algorithms are based on the suggestions in the
corresponding literature and listed in Table 2. It is notable that the
population size of IJAYA and JAYA are both set to be 20 after running a
few trials [24,33].

Firstly, the comparisons are conducted on the best results re-
presented by the RMSE values to illustrate the accuracy of each algo-
rithm. And then, the statistical results and convergence curves are
analyzed and presented to evaluate the robustness and convergence
rate of each algorithm.

5.1. Results on the single diode model

For the single diode model, the comparison results involving the

Table 5
Comparison among different algorithms on double diode model.

Table 4
Absolute error of IJAYA for each measurement on single diode model.

Item Vmeasured (V) Imeasured (A) Icalculated (A) IAE

1 −0.2057 0.7640 0.76408300 0.00008300
2 −0.1291 0.7620 0.76265947 0.00065947
3 −0.0588 0.7605 0.76135269 0.00085269
4 0.0057 0.7605 0.76015229 0.00034771
5 0.0646 0.7600 0.75905435 0.00094565
6 0.1185 0.7590 0.75804225 0.00095775
7 0.1678 0.7570 0.75709227 0.00009227
8 0.2132 0.7570 0.75614266 0.00085734
9 0.2545 0.7555 0.75508882 0.00041118
10 0.2924 0.7540 0.75366651 0.00033349
11 0.3269 0.7505 0.75139433 0.00089433
12 0.3585 0.7465 0.74735805 0.00085805
13 0.3873 0.7385 0.74012235 0.00162235
14 0.4137 0.7280 0.72738829 0.00061171
15 0.4373 0.7065 0.70697944 0.00047944
16 0.4590 0.6755 0.67528720 0.00021280
17 0.4784 0.6320 0.63076483 0.00123517
18 0.4960 0.5730 0.57193362 0.00106638
19 0.5119 0.4990 0.49961038 0.00061038
20 0.5265 0.4130 0.41364992 0.00064992
21 0.5398 0.3165 0.31750930 0.00100930
22 0.5521 0.2120 0.21215297 0.00015297
23 0.5633 0.1035 0.10224948 0.00125052
24 0.5736 −0.0100 −0.00871730 0.00128270
25 0.5833 −0.1230 −0.12550357 0.00250357
26 0.5900 −0.2100 −0.20846403 0.00153597

Fig. 4. Comparisons between experimental data and simulated data obtained by IJAYA for double diode model (a) I-V characteristics; (b) P-V characteristics.
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estimated parameters and RMSE are presented in Table 3. Note that the
results of IADE [10], IGHS [46],and ABSO [11] from literature are also
presented for comparison. The overall best and the second best RMSE
values among all compared algorithms are highlighted in gray bold-
face and boldface, respectively. From Table 3, It can be seen that

IJAYA provides the least RMSE value (9.8603E-04) among all the
chosen algorithms, followed by CMM-DE/BBO, LETLBO, GOTLBO,
IADE, JAYA, ABSO, LBSA, IGHS, CLPSO, DE/BBO, and BLPSO. Due to
the information on the accurate values of parameters is unavailable, the
RMSE is employed to represent the accuracy. Although the RMSE values
of other algorithms except BLPSO are very close to that of IJAYA, any
reduction in the objective function is significant since it leads to im-
provement in the knowledge on the actual values of parameters. To
further confirm the quality of the results, the best estimated parameters
of IJAYA are used to reconstruct the I-V and P-V curves as shown in
Fig. 3. It is obvious that the calculated data obtained by IJAYA are
highly in coincidence with the measured data over the whole voltage
range. Besides, the individual absolute error (IAE) between the ex-
perimental data and simulated data are presented in Table 4. All the
IAE values are smaller than 2.5E-03, which validates the accuracy of the
estimated parameters.

5.2. Results on the double diode model

For the double diode model, there are seven parameters need to be
identified. The estimated parameters and the RMSE of different algo-
rithms are listed in Table 5. The results of IGHS [46] and ABSO [11]
from literature are also used to compare. It is clear that IJAYA also
provides the best RMSE value (9.8293E-04) among all compared al-
gorithms, and ABSO obtains the second best RMSE value. The I-V and P-
V characteristics of the best model estimated by IJAYA and the ex-
perimental data are given in Fig. 4, and the IAE values are shown in
Table 6. From Fig. 4, it can be clearly seen that the calculated data of
IJAYA are in good agreement with the measured data. From Table 6, all
the IAE values are smaller than 2.5E-03, indicating that the high-ac-
curately identified parameters are provided.

Table 7
Comparison among different algorithms on PV module model.

Table 6
Absolute error of IJAYA for each measurement on double diode model.

Item Vmeasured (V) Imeasured (A) Icalculated (A) IAE

1 −0.2057 0.7640 0.76403108 0.00003108
2 −0.1291 0.7620 0.76264510 0.00064510
3 −0.0588 0.7605 0.76137259 0.00087259
4 0.0057 0.7605 0.76020309 0.00029691
5 0.0646 0.7600 0.75913193 0.00086807
6 0.1185 0.7590 0.75814115 0.00085885
7 0.1678 0.7570 0.75720437 0.00020437
8 0.2132 0.7570 0.75625597 0.00074403
9 0.2545 0.7555 0.75518696 0.00031304
10 0.2924 0.7540 0.75373008 0.00026992
11 0.3269 0.7505 0.75140585 0.00090585
12 0.3585 0.7465 0.74730817 0.00080817
13 0.3873 0.7385 0.74001849 0.00151849
14 0.4137 0.7280 0.72725674 0.00074326
15 0.4373 0.7065 0.70686230 0.00036230
16 0.4590 0.6755 0.67522394 0.00027606
17 0.4784 0.6320 0.63077352 0.00122648
18 0.4960 0.5730 0.57200430 0.00099570
19 0.5119 0.4990 0.49971050 0.00071050
20 0.5265 0.4130 0.41373174 0.00073174
21 0.5398 0.3165 0.31753942 0.00103942
22 0.5521 0.2120 0.21211485 0.00011485
23 0.5633 0.1035 0.10215958 0.00134042
24 0.5736 −0.0100 −0.00878197 0.00121803
25 0.5833 −0.1230 −0.12551336 0.00251336
26 0.5900 −0.2100 −0.20831777 0.00168223

Fig. 5. Comparisons between experimental data and simulated data obtained by IJAYA for PV module model (a) I-V characteristics; (b) P-V characteristics.
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5.3. Results on the PV module model

For the PV module model, five parameters need to be identified. The
determined parameters and RMSE values are presented in Table 7. The
results of PS [47] and SA [48] from literature are also shown for
comparison. It can be seen that IJAYA, together with the LETLBO, and
CMM-DE/BBO, obtain the best RMSE value (2.4251E-03) among all the
involved algorithms. LBSA and BLPSO both achieve the second best

RMSE value. Moreover, the calculated data obtained by IJAYA and
experimental data are compared in Fig. 5 and Table 8. The I-V and P-V
characteristics of the estimated model are also in quite good agreement
with the experimental data, and all the IAE values are smaller than
4.8E-03. The high accuracy parameters are achieved again by IJAYA
algorithm.

5.4. Statistical results and convergence curve

The superior performance of IJAYA in terms of accuracy is de-
monstrated in the preceding subsections. In this subsection, the relia-
bility and convergence rate of different algorithms are further tested
through the statistical results and convergence curves. The statistical
results for all compared algorithms over 30 independent runs are shown
in Table 9. The Mean RMSE quantifies the average accuracy, and SD is
the standard deviation of RMSE and indicates the reliability of the
parameters estimation. For each model, the overall best and the second
best results among the nine algorithms are highlighted in gray bold-
face and boldface, respectively.

In terms of the average accuracy and reliability, from Table 9, it can
be observed that IJAYA performs much better than all other algorithms
for single and double diode models. For PV module model, CMM-DE/
BBO features the best average accuracy and reliability, and IJAYA also
exhibits the competitive performance since it achieves the second best
values in terms of the mean RMSE and the standard deviation. In ad-
dition, box-plots are used to show the distribution of results obtained by
different algorithms over 30 independent runs, as shown in Fig. 6. The
span of the solution distributions also shows the superior performance
of the proposed IJAYA algorithm.

The convergence curves shown in Fig. 7 indicate the average RMSE
performance of the 30 independent runs. It is clear that IJAYA has the
faster convergence rate than other algorithms, especially for single and
double diode models.

The aforementioned comparisons demonstrate that the proposed
IJAYA has better searching accuracy, reliability, and faster convergence
rate for solving the parameters identification problems of different PV

Table 8
Absolute error of IJAYA for each measurement on PV module model.

Item Vmeasured (V) Imeasured (A) Icalculated (A) IAE

1 0.1248 1.0315 1.02912228 0.00237772
2 1.8093 1.0300 1.02737617 0.00262383
3 3.3511 1.0260 1.02572968 0.00027032
4 4.7622 1.0220 1.02408866 0.00208866
5 6.0538 1.0180 1.02226793 0.00426793
6 7.2364 1.0155 1.01990268 0.00440268
7 8.3189 1.0140 1.01633264 0.00233264
8 9.3097 1.0100 1.01046533 0.00046533
9 10.2163 1.0035 1.00060024 0.00289976
10 11.0449 0.9880 0.98452419 0.00347581
11 11.8018 0.9630 0.95950393 0.00349607
12 12.4929 0.9255 0.92282835 0.00267165
13 13.1231 0.8725 0.87259590 0.00009590
14 13.6983 0.8075 0.80727526 0.00022474
15 14.2221 0.7265 0.72833977 0.00183977
16 14.6995 0.6345 0.63714108 0.00264108
17 15.1346 0.5345 0.53621404 0.00171404
18 15.5311 0.4275 0.42950971 0.00200971
19 15.8929 0.3185 0.31877043 0.00027043
20 16.2229 0.2085 0.20738439 0.00111561
21 16.5241 0.1010 0.09616244 0.00483756
22 16.7987 −0.0080 −0.00832566 0.00032566
23 17.0499 −0.1110 −0.11093079 0.00006921
24 17.2793 −0.2090 −0.20923354 0.00023354
25 17.4885 −0.3030 −0.30083914 0.00216086

Table 9
Statistical results of RMSE of different algorithms for three models.
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models, and its performance is superior or competitive in contrast with
all compared algorithms.

5.5. Effectiveness of different strategies

In order to verify the effectiveness of different introduced strategies
in proposed IJAYA, this subsection performs the experiments for IJAYA
without the self-adaptive weight (denoted as IJAYA-1), IJAYA without

the experience-based learning (denoted as IJAYA-2), and IJAYA
without the chaotic elite learning (denoted as IJAYA-3), respectively.
The statistical results of different IJAYA variants are summarized in
Table 10. For each model, the overall best and the second best results
among the four algorithms are highlighted in gray boldface and
boldface, respectively. In Table 10, IJAYA can be seen to outperform
all other variants in terms of the best and average RMSE values for each
model. IJAYA-3 achieves the second best results in terms of average
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Fig. 6. Best RMSE boxplot over 30 runs of different algo-
rithms for three models.
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RMSE values, and obtains the best results in terms of the worst and the
standard deviation for three models. The difference between the results
of IJAYA and IJAYA-3 show that the chaotic elite learning is beneficial
to enhance the quality of the final solutions. In summary, removing any
strategy is insufficient to achieve the desired results, but integrating
them lead to excellent performance. This superior performance of
IJAYA verifies its appropriate balance between exploitation and ex-
ploration indeed benefit from the proposed strategies in this study.

6. Conclusions

In this paper, an improved JAYA (IJAYA) algorithm is proposed to
accurately and steadily estimate the parameters of different PV models.
In IJAYA, a self-adaptive weight is introduced to adjust the tendency of

approaching the best solution and avoiding the worst solution during
the search process. This weight aims to assist the algorithm to approach
the potential search region at the early stage and implement the local
search at the later stage. In addition, a learning strategy based on other
individuals’ experience is developed and employed randomly to im-
prove the population diversity, and chaotic learning method is pro-
posed to enhance the quality of the best solution in each generation.
The proposed IJAYA algorithm does not introduce any parameter need
to be tuned and thus easy to implementation. IJAYA is evaluated
through parameters identification problems of single diode, double
diode, and PV module models. Experiment results illustrate that IJAYA
has the superior performance in terms of accuracy and reliability when
compared with other well-established algorithms. Thus, IJAYA can be a
promising candidate method to solve the parameters identification
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Fig. 7. Convergence curves of different algorithms for three models.

Table 10
Statistical results of RMSE of different IJAYA variants for three models.
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problems of photovoltaic models.
In future work, IJAYA will be applied to solve the economic dis-

patch problem in power systems. Also, some other modification will be
proposed, extending the utilization of optimization algorithms for
complex renewable energy problems.
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