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In multiobjective optimization problems, there may exist two or more distinct Pareto optimal
sets (PSs) corresponding to the same Pareto Front (PF). These problems are defined as multimodal
multiobjective optimization problems (MMOPs) [1, 2]. Arguably, finding one of these multiple
PSs may be sufficient to obtain an acceptable solution for some problems. However, failing to
identify more than one of the PSs may prevent the decision maker from considering solution
options that could bring about improved performance. Recently, many researchers [3-9] proposed
different multimodal multiobjective optimization (MMO) algorithms, so there is definitely a need
of evaluating these algorithms in a more systematic manner on an open and fair competition
platform.

In the MMO test suite of CEC’2019, a set of MMO test problems with different characters are
designed, such as problems with different shape of PSs and PFs, coexistence of local and global
PSs, scalable number of PSs, decision variables and objectives. In addition, a fair and appropriate
evaluation criterion and reference data are given to assess the performance of different MMO
algorithms.

The Matlab codes for the MMO test suite of CEC’2019 can be downloaded from the website
given below: http://wwwS5.zzu.edu.cn/ecilab/info/1036/1163.htm.

1 Introduction to the CEC’2019 MMO test problems
1.1 Some Definitions

Given a multiobjective optimization problem Min f(;() :[fl(;(), fz(;(), T (;()J, a feasible
solution Z is said to dominate [1] the other feasible E if both of the two conditions are met:

1) The solution XT is no worse than Z for all objectives, i.e. fi(Z)S fi(Xj) for
i=1..,m;

2) The solution XT is strictly better than Xj for at least one objective, i.e. T, (XT) < f, (xj) for



ie[l,m].

If a solution is not dominated by any other solutions, it is called a nondominated solution. The
nondominated solution set is called Pareto optimal set (PS). The set of vectors in the objective
space that corresponds to the PS is called Pareto front (PF).

The definitions of Local PS, PF and Global PS, PF [1] are as follows:

Local Pareto optimal set (Local PS): For arbitrary solution x in a solution set P_, if there is

no neighborhood solution 9 satisfying ”9—)2” <o (o is a small positive value), dominating

any solution in the set P,_, then P, is called Local Pareto optimal set;
Global Pareto optimal set (Global PS): For arbitrary solution in a solution set Py, if there is

no solution dominating any solution in the set P,, then P, is called Global Pareto optimal set.

Local Pareto Front (Local PF): The set of all the vectors in the objective space that
corresponds to the Local PS is defined as Local Pareto Front.

Global Pareto Front (Global PF): The set of all the vectors in the objective space that
corresponds to the Global PS is defined as Global Pareto Front.

Fig. 1 shows a bi-objective minimization problem with two Global PSs and one Local PS. Solid
lines with stars are global PS/PF, while dashed lines with circles dots represent local PS/PF. Note
that a certain multimodal multiobjective problem may have several Local PSs and Global PSs.
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Fig. 1. Illustration of Local PS, Global PS, Local PF and Global PF.

The method to judge whether a given multiobjective optimization problem is MMO problem or
not is given in this report. For a multiobjective optimization problem, if it meets one of the
following conditions, it is a MMO problem:

1) It has at least one local Pareto optimal solution;

2) It has at least two global Pareto optimal solutions corresponding to the same point on the PF.

The solution which is not dominated by any neighborhood solution is called local Pareto optimal
solution. The solution which is not dominated by any solutions in the feasible space is called
global Pareto optimal solution.

1.2 Summary of the CEC’2019 MMO test problems

The characters of the MMO test functions are shown in Table 1.



Table I. Information and features of the MMO test problems suite

MMO test %G S - > s E
proble & 5 g 5 B 5 < 2
R - 2 B
- 2 = 5 : 2 . E
name @ g = ) - &~
25 =25 & 3 23 E73
£ £% 2 o S S8 2=
S S = o 2 3 85 2%
n 3 »n o Q::s ﬂ? 63 A O <
SYM-PART x x v Convex Linear x x
simple
SYM-PART x x v Convex Linear x x
rotated
Omni-test v x v Convex Linear v x
MMF1 x x v Convex Nonlinear % x
MMF1 z x x v Convex Nonlinear % x
MMF1 a x x 4 Convex Nonlinear % x
MMF2 x x v Convex Nonlinear % v
MMF3 x x v Convex Nonlinear % v
MMF4 x x v Concave Nonlinear % X
MMF5 x x v Convex Nonlinear % x
MMF6 x x v Convex Nonlinear % x
MMF7 x x v Convex Nonlinear % x
MMFS8 x x v Concave Nonlinear % X
MMF9 x x v Convex Linear v X
MMF10 x x v Convex Linear X v
MMF11 x x v Convex Linear v v
MMF12 x x v Convex Linear v v
MMF13 x x v Convex Nonlinear v v
MMF14 v v v Concave Linear v x
MMF14 a v 4 v Concave Nonlinear v x
MMF15 v v v Concave Linear v v
MMF15 a v 4 v Concave Nonlinear v v

*Please Notice: These problems should be treated as black-box problems. The explicit equations
of the problems are not allowed to be used. However, the dimensionality of the problems and the
total number of function evaluations can be considered as known values which can be used to

design your algorithm.

1.3 Definitions of the CEC’2019 MMO test problems

The equations and figures of true PS and PF are present in this subsection.
SYM-PART simple

{fl :(p1+a)2+ pzz
fz :(pl_a)2+ p22

where



{pl =X —t (c+2a)
P, =% —t,b

t; =sgn()>xmin{|f |,1]

c
R |X1 | - (a + 5)
b=t e
b
x| Dy
t, =sgn(x,)x
Its search space is
X, € [-20,20] .
Its global PSs are
X =P
X, =0
Its global PFs are

f, =4a>(1-v)’

where ve[0,1].
When, a=1, b=10, c¢=8.Its true PSs and PF are illustrated in Fig. 2.
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Fig. 2. The true PSs and PF of SYM-PART simple.
SYM-PART rotated

{fl :(p1+a)2+ p22
f,=(p—a)"+p,’

where

{pl =X —t,(c+2a)
P, =X, _tzb



t; =sgn()>xmin{|f |.1]

C
. |r1|_(a+5)
{f =son(r)x| ——=
| gn(r) Jatc
b
. |r2|—5
t, =sgn(r))x

{I’l = (cos @) x X, — (sin @) x X,

I, = (sin @) x X, +(cos @) X X,

Its search space is

Its global PSs are

Its global PFs are

f, =4a>(1-v)’
where ve[0,1].

Whenw = % , a=1, b=10, c=8, its true PSs and PF are illustrated in Fig. 3.
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Fig. 3. The true PSs and PF of SYM-PART rotated.

Omni-test
f = zin:lsin(ﬂxi)
f, = Zin:l cos(x;)

Its search space is



X, €[0,6].
Its global PSs are

X €[2m+1,2m+3/2]
where —n<f <0.

Its global PFs are

f,=—{n* -1’
where —n< f <0.

When n =3, its true PS and PF are illustrated in Fig. 4.
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Fig. 4. The true PSs and PF of Omni-test.
MMF1

f,=|x-2|
f, =1-J|x =2 +2(x, —sin(67|x, — 2|+ 7))’
Its search space is

X €[1,3], x e[-1,1].
Its global PSs are

X, =X
X, = sin(67z|x1 —2|+7z)
where 1<x <3.

Its global PFs are

where 0< f <1.

Its true PSs and PF are illustrated in Fig. 5.
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Fig. 5. The true PSs and PF of MMF1.
MMF1_z
f, =[x -2
Min | 1% =2 +2(x, —sin(2kz|x, —2|+ 7)), X, €[1,2)
T =) —2] 20, —sin@z|x, =2+ 1), %, €[2,3]
where k > 0 (k controls the deformation degree of the global PS in X, €[1, 2)).
Its search space is
x e[1,3],% e[-11].
Its global PSs are
sin(2kz|x, 2|+ 7), X, €[1,2)
~ |sin@z|x 2|+ 7), x €[2,3]
where k> 0.
Its global PF is
f,=1-./f, f, [0,1]
When K =3, its true PSs and PF are shown in Fig. 6.
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Fig. 6. The true PSs and PF of MMF1 z.



MMF1_e
f, =[x -2
Min 1= % —2] +2(x, —sin(67x, ~2|+ 7)), X, €[L,2)
) 1= % =2 +2(x, —a* sin(67z|x, —2|+7))*, , €[2,3]
where a>0&a #1(a controls the amplitude of the global PS inx, €[2, 3]).

Its search space is

x e[1,3],%, e[-a’,a’].

Its global PSs are

{sin(67r|x] —2|+7), % €[1,2)

a* sin(2z|x, —2|+7), X, €[2,3]

where a>0&a=1.
Its global PF is

f,=1-f, f, €[0,1]

When a=e, its true PSs and PF are shown in Fig. 7.
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Fig. 7. The true PSs and PF of MMF1 e.
MMF2

f,=x

=% +2(4(x, = /%)’

20(X, —4/X
—2cos(“Tm)+2), 0<x <1

=% +2(4(x, —1-4/x,)?

20(x, —1—4/X
0 (2—\/_1)”)+2),1<x232

—cos( 7

Its search space is
x [0,1], X, €[0,2].

Its global PSs are



X 0<x <1

X = ,
X, =17 1<x,£2

Its global PFs are

f,=1-yf,

where 0< f <1.

Its true PSs and PF are illustrated in Fig. 8.
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Fig. 8. The true PSs and PF of MMF2.
MMF3
fi=x
1= X, +2(40, = %)’ -
20(X, —+/X
2 cos((z—m) +2)
V2
0<Xx,<0505<x,<1&0.25<x <1
f, =
1= % +2(4(x, —0.5—/x,)?
20(x, —0.5—/x
el ‘/T)”)+ 2)
V2
I1<x,<150<x<025&05<x, <1
Its search space is
X, €[0,1], X, €[0,1.5].
Its global PSs are
X, =X,
Nt 0<x,<0.505<x <1&0.25<x <1
b, -0.5)71<x,<1.50<x <025&0.5< X, <1
Its global PFs are

f,=1-f,

where 0< f <1.



Its true PSs and PF are illustrated in Fig. 9.
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Fig. 9. The true PSs and PF of MMF3.
MMF4
f,=|x|
. 1-%7+2(x, —sin(z|x))>  0<x, <1
1=x2 +2(x, —1-sin(z|x )’ 1<x, <2
Its search space is
x e[-1,1], x, €[0,2].
Its global PSs are
X =X
sin(z|x))  0<x, <1
X, =
? sin(7r|xl|)+1 1<x,<2
Its global PFs are
f,=1-f’
where 0< f <1.
Its true PSs and PF are illustrated in Fig. 10.
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Fig. 10. The true PSs and PF of MMF4.



MMF5
f,=|x-2|
f 1% =2 +2(x, —sin(6z|x, - 2|+ 7))*  -1<x, <1
T =) — 2]+ 206 —2-sin(6z|x, — 2|+ 7)* 1<x, <3
Its search space is
x €[-1,3], x, €[l,3].
Its global PSs are

2

sin(6z | X, —2| +7) -1<x, <
sin(ozr | X, —=2|+7)+2 1<X,<3

Its global PFs are

f,=1-/f,

where 0< f <1.

Its true PSs and PF are illustrated in Fig. 11.
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Fig. 11. The true PSs and PF of MMF5.
MMF6

f,=|x-2|
1= \[x =2 +2(x, —sin(6z|x, -2+ 7))> -1<x, <1
f_L—ﬂZtﬂ+ﬂ&—Lﬂm®ﬂ&—ﬂ+ﬂW 1<x, <3
Its search space is
X €[-1,3], x, €[l 2].
Its global PSs are

2

sin(6z | x, —2|+7) —1<x,<1
sin(oz | X, —2|+7)+1 1<x,<2

Its global PFs are
f,=1-f,

where 0< f <1.



Its true PSs and PF are illustrated in Fig. 12.
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Fig. 12. The true PSs and PF of MMF6.
MMF7
f =[x -2
£ =1-yIx =2+ {x, ~10.3]x ~2f"-cos(24z[x, 2|
. 2
+47)+0.6|X, —2[]-sin(67|x, —2|+ 7)|
Its search space is
x €[1,3], x e[-11].
Its global PSs are
X, =[0.3[%, =2 cos(247|x —2|+47)+0.6|x 2] -sin(677|x ~2|+7)
where 1<x <3.
Its global PFs are
f,=1-f,
where 0< f <1.
Its true PSs and PF are illustrated in Fig. 13.
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Fig. 13. The true PSs and PF of MMF7.



MMF8

f, :sin|X]|
JI=Gin[x ] +2(x, —sin|x|-[x)?*  0<x, <4
J1=Gsin|x ) +2(x, —4—sin|x |- |x ) 4<x, <9

X €l-m, 7], X €[0,9].

f, =
Its search space is

Its global PSs are

sin|x [+]x|  0<x,<4
sin|x |+]x|+4 4<x, <9
where —7<x <7.

Its global PFs are

where 0< f <1.

Its true PSs and PF are illustrated in Fig. 14.
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Fig. 14. The true PSs and PF of MMFS8.
MMF9
fi=x
Min g(x,)
f, = <

1

where g(X) =2-sin’ (npﬂx) , n_ is the number of global PSs.

p

Its search space is
X, €[0.1,1.1], x, €[0.1,1.1].
Its i'" global PS is
1 1

X, =—+—-(i—-1),x €[0.1,1.1
* = n, np( ), X €[ ]

where i=1,2,...,n

p-

Its+* global PF is



151 Global PS Global PF
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Fig. 15. The true PSs and PFs of MMF9.
MMF10
f,=x
Min g(X,)
f, =
X

2 2
where g(X)ZZ—exp{—();)_Og'jj :I_O.Sexp{_(xgi)rﬁ) }

Its search space is
X, €[0.1,1.1], x, €[0.1,1.1].
Its global PS is
X, =0.2, X, €[0.1,1.1].
Its local PS is

X, =0.6, X, €[0.1,1.1].

Its global PF is
7,290 ¢ 10111,
f1
Its local PF is
f, =@, f e[0.1,1.1].

Its true PSs and PFs are shown in Fig. 16.
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Fig. 16. The true PSs and PFs of MMF10.
MMF11
f,=x
Min . g(X,)
2 X

x—0.1

2
where g(X)=2—eXp|:—210g(2)-( ) :|-Sin6(np7rx), N, is the total number of

global and local PSs.

Its search space is
X, €[0.1, 1.1], X, €[0.1,1.1].

Its global PS is

1
X, =——, X €[0.1,1.1].
22np1[ ]

Its i™ local PS is

X, :L+L-(i—1), X, €[0.1,1.1]
2n, n,
where 1=2, 3,...,np .
Its global PF is
gl
2n,
f,=——"—, 1 €[0.1,1.1].
fl
Its local PF is




where i:2,3,...,np.

When N, = 2, its true PSs and PFs are shown in Fig. 17.
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Fig. 17. The true PSs and PFs of MMF11.
MMF12

{flle
n
fz = g(xz)h( f1> 9)

—0.1Y | .
where g(X)=2—exp|:—210g(2)~[Xog ):|-Sln6(np7Z'X), N, is the total number of

2
f f, .
global and local PSs, h(f,,g)= 1—(—0 ——Lsin(27qf,), q is the number of discontinuous
g g

pieces in each PF (PS).

Its search space is
X, €[0,1], x, €[0,1].

Its global PS is discontinuous pieces in

. = 1
L =—
2n,
Its i™ local PSs are discontinuous pieces in
X, :L.,.L.(i -1)
2n, n,

where i1=2,3,...,n .

Its global PF is discontinuous pieces in
f,=g"-h(f.g")
where g° is the global optimum of g(x).

Its local PFs are discontinuous pieces in



f, =9, -h(f.g)
where g are the local optima of g(x).
The ranges of discontinuous pieces depend on the minima of f,=g"-h(f.,g").

When n, =2, its true PSs and PFs are shown in Fig. 18.
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Fig. 18. The true PSs and PFs of MMF12.
MMF13
fi=x
min 9@t
f, ="+
X]

where g(t)=2 —exp{—Zlog(Z)(%j :l -sin® (npﬂ(t)),

t=x, +\/Z , N, is the total number of global and local PSs.

Its search space is
x €[0.1,1.1], X, €[0.1,1.1], X, €[0.1,1.1].

Its global PS is
X, +\/Z=L, x, €[0.1,1.1].
2n,
Its i™ local PSs is

X, +\/Z:%+'n;l, x, €[0.1,1.1].
p

p

where =2, 3,...,N,.

Its global PF is



Its local PFs are

where 1=2,3,...,n .

When n, =2, its true PSs and PFs are shown in Fig. 19.
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Fig. 19. The true PSs and PFs of MMF13.
MMF14

f, = cos(% Xl)cos(% Xz)---cos(% mez)cos(% X ) (1 G (KXo Xy eves Xratc))
f2 = COS(% X ) COS(% X, ) T COS(% Xm—z)Sin(% Xm—l)(l + g(Xm > X1 o+ Xn_p4k ))
Min f, = cos(% Xl)cos(% X,)- -.sin(% oo ) (1+ 9 (Ko Xy - X))

Foy = €08 X )SIN(T X,) (14+ 9 (X Xy 50> X 111))

fm :Sil’l(ﬂ-z Xl)(1+ g(xm! Xm+] 3002 Xm—l+k))

where  g(Xy, Xpy 5-ees Xy ) = 2 —sin’ (npﬂ(xmw )) , N, is the number of global PSs.

Its search space is
x [0,1], fori=1,2,...,n,

where n is the dimension of decision space; m is the dimension of objective space;
k=n-(m-1).



Itsi™(i=1,2,..., Np) global PSs are

1 I . :
X, =——+—-(i=1),x; €[0,1] for j=1:n-1.
2n, n,

Its global PFs are

S(1,) ~a+g

=1

where g° are the global optima of g(X).

When n,=2,m=2,n=3, its true PSs and PFs are shown in Fig. 20.

(a) True PSs of MMF 14 (b) True PFs of MMF14
Fig. 20. The true PSs and PFs of MMF14.

MMF14 a

f = c08(77/5 %) c0s(7/ X,) -+ c08("7/5 X, ;) cos("/, X ) (1 9Ky Xt eves X))
f, = CoS(%/y %) 00S(/) X,)+++COS(%/y Xy ) ST X ) (14 G (Ko Xy vevo X 111))
f, = coS(7/5 %) €08(T/5 X, )+++Sin(%/ X ) (149 (X Koy 5ves Ko 11)

Min
f., = cos(% Xl)sin(% ) (14 (K> Xy seees Xniai))
f = sin(% ) (1+ 9 (X Xt 5o X 1))
where  g(X,, Xp,y s+-es Xy ) = 2—8in’ {npﬂ[xwk -0.5 sin(;rxmiZ+k )+ﬁ}] , n, is the number of
global PSs.

Its search space is
X, €[0,1], fori=12,...,n
where n is the dimension of decision space; m is the dimension of objective space
k=n-(m-1).
Itsi®(i=1,2,..., np) global PSs are
X, =0.5sin(7x_ )+ni-(i -1),x; e[0,1] for j=1:n-1.

p

Its global PFs are



S(1,) =+ g%

=1

where " are the global optima of g(x).

When n, =2,m=2,n=3,its true PSs and PFs are shown in Fig. 21.

[ JGlobalPS| ~~+_
- " ‘

X, 0 0 X
(a) True PSs of MMF14 a (b) True PFs of MMF14 a
Fig. 21. The true PSs and PFs of MMF14 _a.
MMF15
fy = cos(7/5 %) cos("D/5 X, ) -+~ cos(/, X, ) cos(7/ X ) (1 G (X Xy -+ Xoia))

f2 = COS(% Xl) COS(% X2 ) T COS(% Xm—Z)Sin(% Xm—l)(l + g(xm > Xm+1 20 Xm—1+k ))
Min f, = cos(% Xl)cos(% X,)* -.sin(% o ) (1+ 9 (Ko Xy >+ X pak ))

Foy = €08 X )SIN(T X,) (14+ 9 (X Xy 5> X 111))

fm :Sil’l(ﬂ-z Xl)(1+ g(xm! Xm+1 3002 Xm—l+k))

2
-0.1 .
where g(X,, X, ,...,xm_Hk):2—exp{—210g(2)-[xn”g—8j }-sinz(npﬂxm_w) , n, isthe

number of global PSs.
Its search space is
X, €[0,1], fori=1,2,...,n,
where n is the dimension of decision space; m is the dimension of objective space;
k=n-(m-1).
Its global PS is

X, :L, X; €[0,1]for j=1:n—1.
2n,

Itsi™ (i=2,3,..., Np) local PSs are

1 I . :
X, =——+—-(1=1),x; €[0,1] for j=1:n-1.
2n, n,

Its global PF is

S(1,) =+ g%’

=1



where g° is the global optimum of g(x).

Its i™ local PFs are

(f) =a+g)’

Mz

where g, are the local optima of g(x).

When n, =2,m=2,n=3,its true PSs and PFs are shown in Fig. 22.
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(a) True PSs of MMF15 (b) True PFs of MMF15
Fig. 22. The true PSs and PFs of MMF15.
MMF15_a

f = cos(% Xl)cos(% X,)- ~cos(% Xm72)cos(% X ) (1+ 9Ky s X - Xpia))
f, = oS/ %) 00S(/) X,)+++COS(%/5 X 3)SI(T X ) (14 G (Ko Xy oevos X 114))
Min f, = cos(”2 Xl)cos(”2 Xz)---sin(% X)) (1 G (s X eees X))

fot = cos(?, X, )sin(7/, ) (14 (K> Xpay 5eees X))

f :sin(”'le)(l+ O (X Xt -+ Xiok))

2
where  g(X,, Xpyy »--- Xm1+k):2—exp|:—210g(2)-[%j }-sinz(npﬁt),

t=x -0.5 sin(;zx )+2L , N, is the number of global PSs.
m-1+k m-2+k n
p

Its search space is
x. €[0,1], fori=12,...,n

where n is the dimension of decision space; m is the dimension of objective space;
k=n-(m-1).

Its global PS is
X, =0.5sin(7x,_, ), x; €[0,1]for j=1:n—1.

Itsi™ (i=2,3,..., Np) local PSs are



X, =0.5sin(7rxn71)+i(i—l), x; €[0,1]for j=1:n-1.
n
p
Its global PF is

(f,) =a+g’

M=

where g° is the global optimum of g(x).

Its i™ local PFs are

(f) =a+g)

Mz

where g, are the local optima of g(x).

When n,=2,m=2,n=3, its true PSs and PFs are shown in Fig. 23.
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Fig. 23. The true PSs and PFs of MMF15 _a.

2 Evaluation criteria

2.1 Performance indicators

Four performance indicators, the reciprocal of Pareto Sets Proximity (1/PSP) [3], Inverted
Generational Distance (IGD [10]) in decision space (IGDX) [11], the reciprocal of Hypervolume
(1/HV) [12], and IGD in objective space (IGDF) [11] are employed to compare the performances
of different algorithms. Among the indicators, 1/PSP and IGDX are used to compare the
performance in decision space, while 1/HV and IGDF are used to compare the performance in
objective space. The reference data including reference PFs, PSs and reference points of HV are
available on http://www5.zzu.edu.cn/ecilab/info/1036/1163.htm. For all the four indicators, the
smaller value means the better performance.
2.2 Experimental setting

Running times: 21 times

Population size: 100* N_var

Maximal fitness evaluations (MaxFES) : S000*N_var



3 Results Format

Provide the best, worst, mean, median, and standard deviation values of each indicator value for
the 21 runs.
The participants are required to send the final results as the following format to the organizers and
the organizers will present an overall analysis and comparison based on these results.
Create one txt document with the name “AlgorithmName IndicatorName.txt” for each indicator.
For example, the reciprocal of PSP of MO Ring PSO _SCD for test function MMFI, the file
name should be “MO_Ring PSO_SCD _rPSP.txt”.
Then save the results matrix (the gray shadowing part) as Table II-Table V in the file:

Table II. Information matrix for 1/PSP

. Standard
*EE XL Runl Run2 ... | Run21 Best | Worst | Mean | Median

deviation

SYM-PART
simple
SYM-PART
rotated
Omni-test
MMF1

MMFI15 a
Table II1. Information matrix for 1/HV

Run . Standard
FEE XL Run2 | ... | Run2l Best | Worst | Mean | Median o
1 deviation

SYM-PART
simple

SYM-PART

rotated

Omni-test

MMF1

MMF15_a

Table IV. Information matrix for IGDX

. Standard
*EE XL Runl Run2 | ... | Run2l | Best | Worst | Mean | Median o
deviation
SYM-PART
simple
SYM-PART
rotated
Omni-test

MMF1

MMF15_a




Table V. Information matrix for IGDF

. Standard
*EE XL Runl Run2 ... | Run21 Best | Worst | Mean | Median

deviation

SYM-PART
simple
SYM-PART
rotated
Omni-test
MMF1

MMF15_a
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