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Abstract—In real world applications, there are many multi-
objective optimization problems. Most existing multi-objective 
optimization algorithms focus on improving the diversity, spread 
and convergence of the solutions in the objective space. Few 
works study the distribution of solutions in the decision space. In 
practical applications, some multi-objective problems have 
different Pareto sets with the same objective values and these 
problems are defined as multimodal multi-objective optimization 
problems. It is of great significance to provide all the Pareto sets 
for the decision maker. This paper describes the concept of 
multimodal multi-objective optimization problems in detail. 
Novel test functions are also designed to judge the performance 
of different algorithms. Moreover, some existing multi-objective 
algorithms are tested and compared. Finally, a decision space 
based niching multi-objective evolutionary algorithm is proposed 
to solve these problems. The experimental results suggest that 
existing multi-objective optimization algorithms fail to find all 
the Pareto sets while the proposed algorithm is able to find 
almost all the Pareto sets without deteriorating the distribution 
of solutions in the objective space. 

Keywords—Evolutionary algorithms; multimodal multi-
objective optimization; niching  

I. INTRODUCTION  

Many optimization problems have two or more conflicting 
optimization objectives. Improvement of one objective will 
always lead to deterioration of the other objectives. These 
problems are usually called Multi-objective Optimization 
Problems (MOPs). It is impossible  to find the best values of all 
objectives simultaneously. The multi-objective optimization 
algorithms try to find the best trade-off among different  
objectives. Instead of finding one single solution, MOPs need 
locating a set of non-dominated solutions. These solutions 
spread along the Pareto optimal tradeoff surface to provide 
more choices for decision makers. However, few multi-

objective optimization algorithms focus on the distribution of 
solutions in decision space. 

The decision space diversity has attracted several 
researchers’ attention. Shir [1] changed the selection operator 
and diversity measure in CMA-ES [2] to enhance decision 
space diversity. Tahernezhad [3] adopted the innovative 
clustering-based scheme during the optimization cycle to 
obtain more diverse non-dominated vectors in the solution 
space. Ulrich [4] integrated decision space diversity into the 
hypervolume indicator so that these two set measures could be 
optimized simultaneously. Chan [5] applied Lebesgue 
Contribution and Neighbourhood Count on the evolutionary 
algorithm framework to maintain diversity in the parametric 
and the objective space. However, it is not enough only 
considering the diversity in decision space. These algorithms 
aims to improve the distribution of the obtained Pareto 
solutions by considering the diversity in the decision space, but 
do not intend to keep the solutions with the same objective 
values that have different decision values. In fact, the diversity 
and convergence of solutions in decision space should be 
considered simultaneously. 

We try to introduce the niching method [6] into Multi-
Objective Evolutionary Algorithm [7] to maintain different 
solutions corresponding to the same Pareto front point. Since 
there are too many Multi-Objective Evolutionary Algorithms, 
we take the NSGAII [8] as an example and design a decision 
space based niching NSGAII (DN-NSGAII)  to solve this 
problem. 

Niching methods allow solutions to evolve within local 
space. The first niching method was proposed by Cavicchio [9]. 
Subsequently other niching methods, such as crowding [10], 
fitness sharing [11], clearing [12] and speciation [13] were 
proposed. Niching methods promote the formation of sub-
populations and maintain them. They are widely used in single 
objective multimodal problems. Qu [14] proposed distance 
based neighborhood differential evolution to solve single 
objective multimodal problems. Ring-topology based PSO was 
introduced by Li [15]. When niching methods are used in 
multi-objective optimization, they aim to enhance the diversity 
in objective space [16]. Niching methods were applied to 
multi-objective optimization by Hom [17] to spread its 
population out along the Pareto optimal tradeoff surface. 
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However they are not used to maintain different solutions in 
decision space.  

The rest of this paper is organized as follows. Section II 
introduces some multi-objective optimization definitions. The 
multimodal multi-objective optimization is described in detail 
in Section III with two novel test functions and one new 
indicator. A decision space based niching Multi-Objective 
Evolutionary Algorithm is proposed in Section IV. Section V 
presents the simulation results and discussions. Finally, the 
paper is concluded in Section VI. 

II. MULTI-OBJECTIVE OPTIMIZATION 

A. Multi-objective optimization  

Without loss of generality, a multi-objective problem with 
n-dimensional decision variable vectors and m objectives can 
be defined as follows: 
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where n
nxxx RXx  ),,( 21   is n-dimensional decision 

vector; X  is n-dimensional decision space; 
m

myyy RYy  ),,( 21   is m-dimensional objective  
vector; Y  is m-dimensional objective space; F(x) defines m 
functions mapping X  to Y . ),,2,1(0)( kigi x defines 

k  inequality constraints; ),,2,1(0)( ljhi x  defines l  
equality constraints. 

B. Pareto set and Pareto front 

Unlike single-objective optimization, it is hard to decide 
which solution is the best one in multi-objective optimization. 
Dominate relationship [18] is generally used when comparing 
different solutions of multi-objective optimization problems. 
Take minimization multi-objective optimization problem as an 
example, a feasible solution x1 is said to dominate another 
feasible solution 2x  ( 21 xx  ) , if and only if, )()( 21 xfxf ii   

for mi ,,1  and )()( 21 xfxf jj   for at least one 

 mj ,,1 . Non-dominated solutions are the feasible 
solutions which are not dominated by any other solution. In 
decision space the set of non-dominated solutions is called 
Pareto optimal Set (PS). In objective space, the set of points 
corresponding to PS is called Pareto Front (PF). 

III. MULTIMODAL MULTI-OBJECTIVE OPTIMIZATION  

There are many multi-objective optimization problems 
which have more than one Pareto set. In other word, there are 
at least two similar feasible regions in the decision space 
corresponding to the same region of the objective space. These 
problems can be defined as multimodal multi-objective 
optimization problems. As shown in Fig. 1, the same shape 
dots in the decision space correspond to the same shape points 

in the objective area. For example, the two pentagrams in 
decision space (the left coordinate system) correspond to the 
same pentagram in objective space (the right coordinate 
system). It is a new challenge to find all the Pareto optimal 
solutions in decision space simultaneously. 
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Fig 1. Multimodal multi-objective optimization problem 

A. Difficulty analysis  

Different solutions which correspond to the same point in 
objective space are difficult to maintain simultaneously. If one 
of the solutions in decision space has been obtained, the others 
are hard to be maintained. This situation is shown in Fig. 2. 
Both 1A  and 2A  in the decision space correspond to A  in the 

objective space. If we have obtained the solution 1A  in the 

decision space. 2A  has the same objective value with 1A . 

Assume that B  is obtained in decision space, and B  is the 
point in objective space corresponding to B . The distance 2d  

between A  and B  is too small. That is, 1A  and B  are too 
crowded in the objective space. In the traditional multi-
objective optimization algorithms, B  will be deleted. However, 
in the decision space the distance 1d  between 1A  and B  is 
relatively large.  They are not crowded in the decision space. If 
we want to obtain both 1A  and 2A  at the same time, B  should 
not be deleted. Solutions which are close to each other in the 
objective space may be far away from each other in the 
decision space. 
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 Fig 2. Difficulty to obtain all the Pareto sets 



Considering only the distribution in decision space may 
obtain an incomplete PF. As mentioned above, if all the Pareto 
optimal solutions in decision space are wanted, the crowding 
distance in objective space should not be an indicator when 
creating mating pool. However, without this indicator, the 
diversity in objective space may be terrible. We want to obtain 
all the Pareto optimal solutions in decision space with high 
quality of obtained PF in objective space. It is not easy to 
consider the distribution in both decision and objective space  
simultaneously. 

B. Design of test functions 

Test functions have great significance for the theoretical 
research of the algorithm. They should be designed to simulate 
the real world application problems. There are several existing 
test functions to test the algorithmic ability to obtain diversified 
solutions in the decision space, such as Omni [19], EBN [20], 
Two-on-one [21], Superspheres [22] and so on. However, they 
are not consistent with the problem proposed in this paper. 
Therefore, new test functions are designed to test the 
algorithms' performance. 

Without loss of generality, two bi-objective functions with 
two distinct Pareto sets are proposed. These two functions are 
constructed based on UF1 and UF3 [23] by  the point 
symmetry and shift.  

The design procedure of test function1 is as follows. The 
feasible solutions of the original function UF1 exist in space 

10 1  x , 11 2  x . First of all, though the symmetric 

extension of feasible region with 02 x as the axis of 

symmetry, feasible solutions exist in both 10 1  x , 

11 2  x  and 11 1  x , 11 2  x . For the scale of 

generality, the axis of symmetry is shifted from 02 x  to  

22 x . Test function1 is named SS-UF1, which means 
symmetric and shifted UF1. More information about SS-UF1 is 
shown as follows.  

SS-UF1 
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where 31 1  x , 11 2  x . 

 Its true PS is 
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where 31 1  x . 

 Its true PF is 

 2 11f f    (4) 

where 10 1  f . 

 Its true PS and PF are illustrated in Fig. 3. 
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Fig. 3 Illustration of the true PS and PF of SS-UF1  

The design procedure of test function 2 is as follows. The 
feasible solutions of the original function UF3 exist in 

10 1  x , 10 2  x . Firstly, shift the feasible solutions two 

units to the positive direction of 2x  and maintain the original 
feasible solutions. In this way, feasible solutions exist in both 

10 1  x , 10 2  x  and 10 1  x , 21 2  x . Test 
function2 is named S-UF3, which means shifted UF3. More 
information about S-UF3 is shown as follows. 
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where 10 1  x , 20 2  x .  

 Its true PS is 
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 Its true PF is 

 2 11f f    (7) 

where 10 1  f . 

 Its true PS and PF are illustrated in Fig. 4. 
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Fig. 4 Illustration of the true PS and PF of S-UF3 

C. The indicator used to measure the qulity of obtained 
solurtions in the decision space 

The indicator used to measure different algorithms should 
reflect both the diversity and the convergence in decision space. 
Most researchers only adopt the diversity indicator in decision 
space. However, the diversity in decision space doesn’t 
guarantee their convergence to the true PS. This situation is 
shown in Fig. 5 (a), the diversity of obtained solutions is good, 
but the convergence of obtained solutions is poor. In this way, 
it is unreasonable to judge algorithms only by diversity in the 
decision space. Similarly, it is also unreasonable to judge 
algorithms simply by the convergence of their obtained 
solutions in the decision space (Fig. 5 (b)). The solutions we 
except to obtain should have both good diversity and 
convergence, which is shown in Fig. 5 (c). Therefore, both the 
diversity and the convergence of their obtained solutions 
should be considered. 

1x

2x
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(a) Good diversity poor convergence      (b) Poor diversity good convergence  

2x

1x

 
(c) Good diversity good convergence 

Fig. 5 Diversity and convergence in the decision space 

In this paper, we use Inverse Generational Distance (IGD) 
in decision space to judge obtained solutions. IGD is originally 
used in objective space to measure the distribution of obtained 
Pareto front points. IGD values represent the average distance 
(Euclidean distance) between the obtained solutions and 



reference solutions (true PF) in objective space. And a new 
indicator in the decision space (IGDX) is proposed by Zhou 
[24] to evaluate the diversity and convergence in the decision 
space. IGDX values represent the average distance (Euclidean 
distance) between the obtained solutions and reference 
solutions (true PS) in decision space. Let *P  denote a set of 
uniformly distributed points along the PS (in the decision 
space). Let O  denote a set of obtained solutions, the IGDX can 

be calculated as the average distance from *P  to O : 

 
**

*

( , )
( , ) v P

d v O
IGDX O P

P
    (8) 

where ),( Ovd  is the minimum Euclidean distance between 

v and the points in O . If *P  represents the PS well enough, 
IGDX can measure both the diversity and convergence in the 
decision space. A smaller IGDX value means the obtained 
solutions are closer to the true PS. As is shown in Fig. 6, the 
obtained solutions in (a) is closer to the reference PS than 
those in (b) and the IGDX of (a) is smaller than that of (b). 
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(a)                                               (b) 

Fig. 6 Illustration of the IGDX  

IV. DECISION SPACE BASED NICHING MULTI-OBJECTIVE 

EVOLUTIONARY ALGORITHM 

In order to solve the multimodal multi-objective 
optimization problems, a decision space based niching method 
is proposed to be integrated into multi-objective evolutionary 
algorithms. Since the NSGAII [8] proposed by Deb is one of 
the most common used multi-objective evolutionary algorithms, 
we take it as an example in this paper. A fast nondominated 
sorting method is used to reduce the computational complexity. 
Besides, a selection operator is presented to select the best 
(with respect to fitness and spread in objective space) solutions. 
Is the NSGAII able to find all the PSs of problems proposed in 
this paper? It is tested on the test functions designed in Section 
III-C. The result is shown in Fig. 7. It is obvious that NSGAII 
cannot find all the Pareto optimal solutions. The reason is that 
the algorithm always delete crowded solutions in the objective 
space like B  in the Fig. 2. It cannot obtain solutions like 1A  

and 2A  simultaneously. 

To maintain all the Pareto optimal solutions, two 
improvements are made. Firstly, niching method is used to 

create the mating pool. Secondly, selection operator is 
modified. 

Niching method is used to create the mating pool. Only 
solutions in the same niche compete with each other. In this 
paper, crowding method [25]  is used. The procedure to create 
the mating pool is described as follows. Firstly, a solution is 
randomly chosen from the population. Secondly, a constant 
number (crowding factor (CF)) of solutions are randomly 
selected in the left population. Thirdly, the distances 
(Euclidean distance) between the current solution and CF 
solutions are calculated and the closest one to the current 
solution is selected. Finally, add the superior one of the two 
solutions (current solution and the closest solution) to the 
mating pool. Repeat the four steps until the mating pool is full. 
Since the distance is calculated in the decision space, we call it 
decision space based niching NSGAII. 
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Fig. 7 The obtained PS and PF of NSGAII for SS_UF1 

The original NSGAII selects solutions with respect to the 
nondominated sorting and the crowding in objective space. As 
it is analyzed above, the crowding in the objective space should 
not be considered to maintain different solutions corresponding 
to the same point in the objective space. The crowding in 
objective space is replaced with crowding in decision space. 
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(c) Obtained PS of S-UF3 

The DN-NSGAII can find much more Pareto optimal 
solutions than NSGAII. We test it on SS_UF1. The result is 
shown in Fig. 8. Comparing Fig. 7 with Fig. 8, the obtained PS 
by DN-NSGAII is obviously better than the original NSGAII. 
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Fig. 8 The obtained PS and PF of DN-NSGAII for SS_UF1 

V. SIMULATION RESULTS 

Four algorithms are tested on the two proposed novel test 
functions. They are DN-NSGAII, NSGAII [8], MOEAD [26] 
and SPEA2 [27]. The population size and generation number 
of all the four algorithms are set to 800 and 100 respectively. 

The obtained PSs and PFs are shown in Fig. 9. Fig. 9 (a) 
and (c) show the four algorithms’ obtained PS of the two test 
functions. Fig. 9 (b) and (d) show the four algorithms’ obtained 
PF of the two test functions. The obtained PS of DN-NSGAII 
covers most of the true PS in both test functions, while other 
algorithms miss many parts of the true PS. 

Hypervolume (HV) and  IGD are used to measure their 
obtained PFs, and IGDX is used to measure their obtained PSs. 
The simulation results are shown in Table I-III. The results in 
the tables are all the average values of running 50 times. The 
higher HV and lower IGD mean the obtained PF is closer to 
the true PF, and the lower IGDX means the obtained PS is 
closer to the true PS. We can see that IGDX of DN-NSGAII is  
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Fig. 9 Obtained PSs and PFs of test functions 

TABLE I.  IGDX OF THE FOUR ALGORITHMS 

TABLE II.  IGD OF THE FOUR ALGORITHMS 

TABLE III.  HV OF THE FOUR ALGORITHMS 

 

the lowest. From this point DN-NSGAII obtains the best PS. 
Although the HV and IGD of DN-NSGAII are not highest, 
they are close to the highest. 

 

 

VI. CONCLUSION  

This paper proposes a new challenge in multi-objective 
optimization. The difficulties to overcome the challenge are 
analyzed in detail. Two test functions are designed and three 
indictors are adopted to compare the performance of four 
algorithms. Finally a decision space based niching Multi-
Objective Evolutionary Algorithm is proposed. Results show 
that the commonly used multi-objective optimizations fail to 
find all the Pareto optimal solutions, while DN-NSGAII can 
obtain more  Pareto optimal solutions without deteriorating the 
PF. 

DN-NSGAII will be further improved and novel high-
dimension multimodal multi-objective test functions will be 
designed in the future. In addition, the proposed algorithm will 
be applied to real world problems. 
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