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Abstract—This paper presents a new particle swarm optimizer
for solving multimodal multiobjective optimization problems
which may have more than one Pareto-optimal solution corre-
sponding to the same objective function value. The proposed
method features an index-based ring topology to induce sta-
ble niches that allow the identification of a larger number of
Pareto-optimal solutions, and adopts a special crowding distance
concept as a density metric in the decision and objective spaces.
The algorithm is shown to not only locate and maintain a larger
number of Pareto-optimal solutions, but also to obtain good dis-
tributions in both the decision and objective spaces. In addition,
new multimodal multiobjective optimization test functions and
a novel performance indicator are designed for the purpose of
assessing the performance of the proposed algorithms. An effec-
tiveness validation study is carried out comparing the proposed
method with five other algorithms using the benchmark functions
to prove its effectiveness.

Index Terms—Benchmark functions, multimodal,
multiobjective, particle swarm optimization (PSO), ring
topology.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems have two or
more conflicting objectives to be optimized. Without

loss of generality, the minimization multiobjective problem can
be formulated as

min �f (�x) = [
f1(�x), f2(�x), . . . , fm(�x)] (1)

Manuscript received December 20, 2016; revised April 7, 2017 and July 13,
2017; accepted September 4, 2017. Date of publication September 19, 2017;
date of current version September 28, 2018. The work was supported in
part by the National Natural Science Foundation of China under Grant
61473266, Grant 61673404, Grant 61305080, and Grant U1304602, in part
by the Research Award Fund for Outstanding Young Teachers in Henan
Provincial Institutions of Higher Education of China under Grant 2014GGJS-
004, in part by the Program for Science and Technology Innovation Talents
in Universities of Henan Province in China under Grant 16HASTIT041 and
Grant 16HASTIT033, and in part by the Scientific and Technological Project
of Henan Province under Grant 152102210153. (Corresponding author:
Jing Liang.)

C. Yue and J. Liang are with the Industrial Technology Research Institute
and School of Electrical Engineering, Zhengzhou University, Zhengzhou
450001, China (e-mail: zzuyuecaitong@163.com; liangjing@zzu.edu.cn).

B. Qu is with the School of Electric and Information Engineering,
Zhongyuan University of Technology, Zhengzhou 450007, China (e-mail:
qby1984@hotmail.com).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org provided by the authors. This contains a document
with the details of test functions and the PSs and PF obtained by different
algorithms on SYM_PART simple and Omni-test. This material is 386 KB in
size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2017.2754271

subject to gi(�x) ≤ 0 i = 1, 2, . . . , k (2)

hj(�x) = 0 j = 1, 2, . . . , p (3)

where �x = (x1, x2, . . . , xn) is an n-dimensional decision
vector; �f is an m-dimensional objective vector; gi(�x) ≤ 0
(i = 1, 2, . . . , k) represent inequality constraints; and hi(�x) =
0( j = 1, 2, . . . , p) are equality constraints. The n-dimensional
space consisting of all the possible values of the decision vec-
tor �x is known as the decision space, and the m-dimensional
space composed of all the possible values of the objective vec-
tor �f (x) is the objective space. In multiobjective optimization
problems, different solutions can be compared according to
the Pareto dominance relationship: given two feasible solu-
tions �x and �y, solution �x is said to dominate �y if fi(�x) ≤ fi(�y)
for i = 1, . . . , m and there exists at least one j ∈ {1, . . . , m}
so that fj(�x) < fj(�y). A solution is said to be nondominated
if it is not dominated by any other solution. The set of all
the nondominated solutions in the decision space is called the
Pareto-optimal set (PS). The Pareto front (PF) is the set of all
the vectors in the objective space that correspond to the PS.

In multiobjective optimization problems there may exist two
or more distinct PSs corresponding to the same PF. Arguably,
finding one of these multiple PSs may be sufficient to obtain
an acceptable solution for some problems. However, failing
to identify more than one of the PSs may prevent the deci-
sion maker from considering solutions that could bring about
improved performance. A simple real-world example is illus-
trated in the path-planning problem summarized in Fig. 1,
where travelers desire to drive from a starting point to the
destination in the least possible time and involving the fewest
number of intersections. There are six nondominated options,
with objective values as described in the caption of Fig. 1. It
is known that {Option 1, Option 2, Option 3} and {Option
4, Option 5, Option 6} are two PSs that correspond to the
same PF. However, the communal facilities encountered by
these paths are different, as the figure shows that the gas sta-
tion is accessible along the paths in {Option 1, Option 2,
Option 3}, whereas there are no gas stations in the paths
{Option 4, Option 5, Option 6}. The gas station is necessary
for some travelers, while some other travelers want to avoid
the gas station since it is not safe sometimes. If an algorithm
obtains only one PS, it cannot meet the needs of different
travelers. Hence, in this scenario it is of significant value to
maintain more than one PS for the purpose of further decision
making.
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Fig. 1. Path planning problem. Option 1: 1 intersection, 60 min. Option 2:
2 intersections, 40 min. Option 3: 3 intersections, 20 min. Option 4:
3 intersections, 20 min. Option 5: 2 intersections, 40 min. Option 6:
1 intersection, 60 min.

A few real-world optimization problems with multiple PSs
have already been identified in [1] and [2]. An in-depth analy-
ses of these prior works leads to the conclusion that in practical
applications engineers can take advantage of knowledge of
a larger number of Pareto-optimal solutions. Furthermore,
the costs of alternative Pareto-optimal solutions may differ
significantly [3]. Therefore, it is of significant practical benefit
to develop effective algorithms to solve optimization problems
that may have more than one PS that maps to the same PF. In
2016, Liang et al. [4] referred to this class of problems as
multimodal multiobjective optimization problems.

Multimodal optimization refers to locating not one opti-
mum, but instead identifying a set of locally optimal
solutions [5]. Traditionally, multimodal problems are posed
as single-objective problems that may have more than one
local optimum or several global optima. A most popular
method to solve multimodal problems is niching technique [6]
inspired on the way organisms evolve in nature. Numerous
variations of niching methods have been proposed, includ-
ing fitness sharing [7], [8], crowding [9], clearing [10], and
speciation [11]. However, these niching methods involve a rel-
atively large number of parameters, such as the sharing radius
or crowding factor. These parameters are often difficult to set
by the use of the algorithm, because they depend on spe-
cific characteristics of each optimization problem. To avoid
introducing new parameters, Li [12] proposed an index-based
ring-topology particle swarm optimization (PSO) algorithm for
multimodal optimization. Its main characteristic is that it can
form stable niches without any niching parameters.

As a stochastic optimization algorithm, PSO is a robust and
effective optimization technology [13] that was first proposed
in 1995 [14] to solve single-objective optimization problems.
Subsequently, many PSO variants have been proposed to solve
multiobjective or multimodal problems [15]–[19]. This paper
proposes a new PSO variant for multimodal multiobjective
optimization problems.

When solving multimodal multiobjective optimization prob-
lems, particular attention should be paid to the decision space.
Note that niches can be induced in the decision space to assist
in searching for more Pareto-optimal solutions. In addition,
in principle a crowding-distance metric can be embedded in
the decision space to play a role in environmental selection
processes. These issues are addressed in this paper through
the introduction of a new algorithm that the authors call
multiobjective PSO using ring topology and special crowding

distance (SCD) (MO_Ring_PSO_SCD) conceived for solv-
ing multimodal multiobjective problems. Ring topology is
adopted to form stable niches and locate multiple optima.
All the solutions are sorted according to two indicators called
nondominated ranking and SCD. The net effect is that a larger
number of Pareto-optimal solutions can be maintained.

This paper includes five major contributions. First,
multimodal multiobjective problems are introduced, along
with their dominant features, and a real-world application
example is given as a practical illustration. Second, a novel
multiobjective PSO using ring topology and SCD is proposed.
The ring topology is effective for finding a larger number of
Pareto-optimal solutions. Two elite archives are established
to store the population history, and in addition, the SCD
acts as a second criterion for environmental selection, which
helps to maintain more Pareto-optimal solutions and improve
their diversity. Third, new multimodal multiobjective test func-
tions (MMFs) are designed, along with technical treatments of
the problem function, feasible region, true PF and PSs. Fourth,
this paper proposes the concept of Pareto sets proximity (PSP)
as a new performance indicator that reflects both the over-
lap ratio and distance between the true and the obtained PSs.
Fifth, the effectiveness of the new proposed algorithm is veri-
fied by: 1) comparing the performance of multiobjective PSO
algorithms with and without ring topology or SCD; 2) compar-
ing the new algorithm with three state-of-the-art multiobjective
algorithms and two multimodal multiobjective algorithms; and
3) analyzing in the mechanics and convergence behavior of the
MO_Ring_PSO_SCD in detail.

The reminder of this paper is organized as follows.
Section II reviews related works. The proposed algorithm
MO_Ring_PSO_SCD is described in Section III. Section IV
proposes features and complexity of MMFs and Section V
gives a novel performance indicator. Experiments and analy-
sis are presented in Section VI. At last, this paper is concluded
in Section VII.

II. RELATED WORKS

A. Prior Works on Manipulating the Distribution of the
Solutions in the Decision Space

Prior researchers have developed tools for manipulating
and analyzing the distribution of the solutions in the deci-
sion space. Deb and Tiwari [20] proposed the Omni-optimizer
algorithm, where the concept of a crowding distance (CD) in
the decision space was introduced and used to play a role in
a nondominated sorting scheme. It is straight forward to rec-
ognize that, maintaining good distributions is not equivalent to
locating more Pareto-optimal solutions. To that end, a supple-
mentary operation should be introduced. Chan and Ray [21]
adopted the concepts of Lebesgue contribution and neighbor-
hood count to maintain diversity in the decision and objective
spaces. The radius of the neighborhood, which plays a central
role in this algorithm, is calculated as the maximum closest
distance between the solution and its neighbors, and hence is
a time consuming numerical operation.

Zhou et al. [22] proposed a probabilistic model based
on a multiobjective evolutionary algorithm to simultaneously
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Fig. 2. Illustration of multimodal multiobjective problem.

approximate the PS and the PF. However, this algorithm can
only deal with multiobjective problems of class II [22]. Other
drawback of the method is the technique performs poorly when
the PS is a linear manifold.

Liang et al. [4] defined the multimodal multiobjective
optimization problem, which could be succinctly illustrated
through the diagram in Fig. 2. The figure shows a simple
diagram illustrating a case, where there are two PSs cor-
responding to the same PF. Liang et al. [4] proposed an
algorithm called DN-NSGAII conceived for the purpose of
locating more PSs. The technique first ranks solutions accord-
ing to nondominated sorting scheme and the solutions in
the same front are then sorted based on a decision-space
CD. Therefore, in DN-NSGAII the nondominated and less-
crowded solutions in the decision space are preferred. It has
been demonstrated that this algorithm can obtain more solu-
tions than NSGAII [23] and various other commonly used
multiobjective optimization approaches. However, the distri-
bution of solutions in the decision space is not very good (see
Fig. 9 (a) and (c) in [4]).

B. Framework of Particle Swarm Optimization

PSO is a population-based algorithm, which makes it par-
ticularly well suited for solving multimodal optimization
problems. PSO was inspired by the social behavior of birds
within a flock [14]. In this method, the historical personal best
position of a point (also called particle) is denoted pbest, and
the historical best position of its neighborhood is called nbest.
Each particle in the swarm is led by pbest and nbest to fly from
a starting position to a better area. Let �xi(t) and �vi(t) denote
the position and velocity of particle pi of the tth generation.
They are updated according to the following equations:

�xi(t) = �xi(t − 1) + �vi(t) (4)

and

�vi(t) = W�vi(t − 1) + C1r1
(�xpbesti − �xi(t)

)

+ C2r2
(�xnbesti − �xi(t)

)
(5)

where W is the inertia weight (often set to 0.7298, according
to [24]), C1 and C2 are constants (which satisfy the equal-
ity C1 + C2 = 4.1 [24]) used to balance exploration and
exploitation processes, and r1 and r2 are random values uni-
formly generated in the range [0, 1]. The key step in the
PSO methodology is the selection of leaders for the current
particles [25].

When extending PSO algorithms from the single-objective
to the multiobjective case, three issues become of particu-
lar significance: 1) the selection of a leader particle; 2) the
management of the distribution properties; and 3) the man-
agement of the convergence speed. Regarding the first issue,
the leader-particle selection is a relatively straightforward pro-
cedure in single-objective optimization, where one can simply
declare that particle with the largest fitness value is the best
candidates to serve as leaders. In multiobjective optimization,
however, the identification of a best leader among all the solu-
tions may become a challenging task due to inherent conflicts
introduced by the multiple objectives. In that case it is natu-
ral to give preference to nondominated solutions to serve as
candidates for the leader designation. Concerning the second
issue, it is necessary to develop of a methodology that can
ensure a good distribution of solutions in the decision space
and in the corresponding objective space. Finally, regarding
the third issue, the PSO convergence speed has been addressed
through a number of communication topologies. In particular,
the star, ring, and von Neumann topologies are known to be
effective in avoiding premature convergence. The topology-
based PSO algorithms are reviewed and compared in [26].
However, these topological approaches cannot induce stable
niches, and as a consequence in multimodal problems the
population converges to a single solution instead of multiple
solutions. In contrast, r3pso described in [12], which incor-
porates an index-based ring topology, has been demonstrated
through experimental results that it can form stable niches.
In addition, the algorithm does not require the introduction
of niching parameters, which is an attractive feature. The
three issues described here are addressed in the new algorithm
described in the next section.

III. DESCRIPTION OF MO_RING_PSO_SCD

As a population-based algorithm, PSO has the capability,
and hence the natural advantage of searching for multiple
optima in a single run. In multimodal multiobjective opti-
mization problems, where a large number of Pareto-optimal
solutions should be searched for and maintained, PSO is there-
fore a natural choice for use as an optimizer. Inspired by the
single-objective particle swarm optimizer using ring topology
proposed by Li [12], this paper proposes a multiobjective PSO
algorithm with ring topology, and includes a SCD, which the
authors denote by the acronym MO_Ring_PSO_SCD. In this
section, the MO_Ring_PSO_SCD procedure is presented fol-
lowed by a discussion of its underlying mechanism for the
purpose of analyzing how and why the proposed algorithm
can successfully address multimodal multiobjective problems.
Finally, the novelty of the proposed algorithm is described
and the convergence behavior of MO_Ring_PSO_SCD is
compared with that of alternative algorithms.

A. Procedure of MO_Ring_PSO_SCD

In MO_Ring_PSO_SCD, the personal best archive (PBA)
and the neighborhood best archive (NBA) are first estab-
lished, and then the pbest and gbest are selected from the two
respective archives. Ring topology is used to induce multiple
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Algorithm 1 MO_Ring_PSO_SCD
1 //Initialize Population P(0)
2 Evaluation(P(0))
3 //Initialize PBA and NBA
4 for i = 1: ParticleNumber
5 PBA{i} = Pi (0)
6 NBA{i} = PBA{i}
7 end for
8 while Generation < MaxGenerations do
9 for i = 1 : ParticleNumber
10 //Sort particles in PBA and NBA
11 Sorted_PBA{i} = non-dominated_scd_sort(PBA{i})
12 Sorted_NBA{i} = non-dominated_scd_sort(NBA{i})
13 //Select pbest and nbest
14 pbesti = The first particle in Sorted_PBA{i}
15 nbesti = The first particle in Sorted_NBA{i}
16 Update Pi(t) to Pi(t + 1) according to (4) and (5)
17 Evaluation(Pi(t + 1))
18 //Update PBA
19 Put Pi(t + 1) into PBA{i} and remove particles dominated by

Pi(t + 1)
20 end for
21 //Update NBA
22 for i = 1: ParticleNumber
23 if i = 1
24 temp_NBA{i} = [PBA{ParticleNumber},

PBA{1}, PBA{2}]
25 else if i = ParticleNumber
26 temp_NBA{i} = [PBA{ParticleNumber -1},

PBA{ParticleNumber}, PBA{1}]
27 else
28 temp_NBA{i} = [PBA{i-1}, PBA{i}, PBA{i + 1}]
29 end if
30 NBA{i} = non-dominated particles in temp_NBA{i}
31 end for
32 end while
33 Output the non-dominated particles in NBA

niches. In addition, a special selection scheme is proposed
to maintain more Pareto-optimal solutions. The procedure of
MO_Ring_PSO_SCD is shown in Algorithm 1, where P repre-
sents the whole population and Pi(t) stands for the ith particle
at the tth generation. The personal best positions are retained
in PBA, where the notation PBA{i} represent the ith paticle’s
best positions found so far. The PBA acts as an “anchor” that
provides a stable network for the whole population. Due to the
use of the PBA, the position of each particle can be improved
generation by generation in a stable fashion.

The neighborhood best positions are represented as NBA,
where NBA{i} denotes the best positions within the ith
particle’s neighborhood. There are three particles in each
neighborhood and each particle interacts with its immediate
neighbors on its right and left. Instead of using the global
best positions of the whole population, the neighborhood best
positions of each particle are employed to avoid having the
population converge to a single point. Since the neighborhood
is established using an index-based ring topology, particles in
different neighborhood cannot interact with each other directly.
The adoption of the NBA restricts the information transmis-
sion through the population, hence allowing the formation of
multiple niches during the search.

The general procedure for implementing the
MO_Ring_PSO_SCD algorithm is as follows. First, the
whole population (P), the PBA and the NBA are initialized.
Then, the ith particle’s leaders (denoted as pbesti and nbesti)
are, respectively, chosen from PBA{i} and NBA{i} according
to the nondominated_scd_sort algorithm. After sorting, the
first particle in the sorted PBA{i} is chosen as pbesti and
the first one in the sorted NBA{i} is chosen as nbesti. Then
Pi(t) is updated to Pi(t + 1) according to (4) and (5). After
evaluation, Pi(t + 1) is stored into PBA{i} and all particles
dominated by Pi(t + 1) are removed. Then NBA{i} (the
ith particle’s NBA) is updated. The neighborhood of the ith
particle (1 < i < ParticleNumber) includes the (i − 1)th
particle, the ith particle and the (i + 1)th particle. The neigh-
borhood of the first particle contains the last particle, the first
particle and the second particle, while the neighborhood of
the last particle contains the (ParticleNumber - 1)th particle,
as well as the last and the first particles. The nondominated
particles in the personal best archives of the ith particle’s
neighborhood are selected as the updated NBA{i}. The above
steps are repeated until the termination conditions are met.
The description of nondominated_scd_sort and the method to
calculate the SCD are presented in the following parts.

1) Description of non-dominated_scd_sort: The nondomi-
nated_scd_sort is carried out in two steps. In the first step,
the particles are sorted according to nondominated sorting
scheme [23]. Then, in the second step the SCDs of nondom-
inated particles are calculated. The nondominated solutions
are ranked in descending order according to their SCDs. After
sorting, the first particle is the nondominated solution with the
largest SCD. Details of calculating the SCD are described in
the next part.

2) Special Crowding Distance: The SCD used in the
proposed algorithm is a modification of the approach imple-
mented in the Omni-optimizer technique [20]. The modified
procedure involves two steps. The first step involves the calcu-
lation of the CD, for each particle in the decision space and for
its corresponding image in the objective space. In the second
step, the CDs from the first step are used to assign an SCD
metric to each particle in the decision and objective spaces,
using a criterion described below.

To describe the first step of the SCD calculation procedure,
let CDi,x be the CD of particle i in the decision space, CDi,f

be the CD of the image of particle i in the objective space,
and let CDavg,x and CDavg,f , respectively, be the average CDs
in the decision and objective spaces. Fig. 3 illustrates the pro-
cedure used to calculate the CDi,x in the decision space, for
the simple case of five particles and two decision variables x1
and x2. The calculation of the CDi,f in the objective space
is carried out in an analogous fashion to that adopted for
the decision space, following the reasoning illustrated with
the assistance of Fig. 3(a) and (b), along with an obvious
adaptation of the corresponding formula to denote elements
in the objective space. However, when considering boundary
points in the objective space (i.e., the analog of Fig. 3(c)), the
proposed method adopts a new convention. More precisely, to
a particle i which is the boundary point in the objective space,
we assign the crowding metric as follows. In minimization
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(a) (b) (c)

Fig. 3. Illustration of the proposed CD calculating method in decision space,
(a) Rank the particles according to x1. (b) CD in decision space of parti-
cle 3, CD3,x = (|x1,4 − x1,2|/|x1,5 − x1,1|)+(|x2,4 − x2,2|/|x2,5 − x2,1|)(xi,j
represents the ith dimension value of the jth particle). (c) CD in decision
space of boundary particle 5, CD5,x = 2 ∗ ((|x1,5 − x1,4|/|x1,5 − x1,1|) +
(|x2,5 − x2,4|/|x2,5 − x2,1|)). (Note that the CD in objective space of bound-
ary is different from that of decision space).

problems, when particle i has the minimum value for the mth
objective, the contribution of the mth objective in CDi,f is
set to 1 and when it has the maximum value for the mth
objective, the contribution of mth objective in CDi,f is set
to 0. Conversely, in maximization problems, when particle i
has the minimum value in the mth objective, the contribu-
tion of mth objective in CDi,f is set to 0. When particle i
has the maximum value in the mth objective, the contribution
of mth objective in CDi,f is set to 1. For example, assum-
ing that Fig. 3(c) shows the distribution of five solutions to
a minimization problem in the objective space, x1 and x2 in
Fig. 3(c) are, respectively, replaced by f 1 and f 2. Since particle
5 has the maximum value for the first objective. The contri-
bution of the first objective in CD5,f is set to 0. However,
particle 5 has the minimum value for the second objective.
The contribution of the second objective in CD5,f is set to 1.
Therefore, the CD5,f = (0 + 1) = 1. This boundary-point
metric assignment is a significant departure from the method
in [20]. In Omni-optimizer, if particle i is the minimum solu-
tion in the mth objective, CDi,f is set to ∞. Then the CDavg,f

is equal to ∞. In the stage of “Determine the final CD,” there
is no chance that CDi,f > CDavg,f since the CDavg,f is equal
to ∞.

In the second step, the SCDi, is assigned as

SCDi = max
(
CDi,x, CDi,f

)
(6)

when either CDi,x> CDavg,x or CDi,f > CDavg,f ; otherwise
we set

SCDi = min
(
CDi,x, CDi,f

)
. (7)

These equations show that the SCD concept involves a max
or min selection step that involves crowding metrics from the
decision and objective spaces. This methodology can therefore
promote diversity in both spaces simultaneously.

B. Mechanism of MO_Ring_PSO_SCD

The combination of ring topology and the SCD can be
used to advantage for solving multimodal multiobjective prob-
lems effectively. The reason is that a central characteristic
of multimodal multiobjective problems is that there may be
two or more Pareto-optimal solutions corresponding to the
same point in the objective space. As soon as one of the

Pareto-optimal solutions is found, it is more likely to be
chosen as a parent or leader for the next generation and
the next population will be guided toward it. Therefore, the
other Pareto-optimal solutions, which correspond to the same
point in the objective space, become difficult to approach.
Even though these alternative optimal solutions have been
successfully located, it is hard for them to survive in the
environmental selection process, because they crowd near the
previous solution in the objective space [4]. An algorithm
should have two kinds of capabilities to solve multimodal
multiobjective problems, namely the ability to: 1) find as
many as possible Pareto-optimal solutions and 2) maintain
the Pareto-optimal solutions that correspond to the same point
in the objective space. In MO_Ring_PSO_SCD, with the
assistance of ring topology, each particle only exchanges infor-
mation with its closed neighbors. Thus, niches are formed
in the population, and consequently the diversity of popu-
lation is improved. Therefore, MO_Ring_PSO_SCD is able
to search out more Pareto-optimal solutions. In addition,
the use of the SCD as a second environmental selection
criterion enables MO_Ring_PSO_SCD to maintain the Pareto-
optimal solutions that correspond to the same point in the
objective space. For example, assume that solutions A1 and
A2 have been located, as shown in Fig. 2. Their CD in
the objective space is zero (because both solutions cor-
respond to A′). However, the distance between the two
solutions in the decision space is large. The SCD adap-
tively chooses the distance in the decision space as their
CD according to (6). Therefore, A1 and A2 are both likely
to be selected as leaders in different niches of the next
generation. Guided by leaders, the particles in niches cor-
responding to A1 and A2 will fly toward them separately.
Therefore, both PS1 and PS2 are likely to be obtained gen-
eration after generation. This provides a reason why the
combination of ring topology and SCD, as implemented in
MO_Ring_PSO_SCD, leads to a more effective approach to
multimodal multiobjective problems. Experimentally verifica-
tion of the effectiveness of the proposed algorithm is given in
Section VI-B.

C. Novelty and Convergence Behavior of
MO_Ring_PSO_SCD

The inspiration for MO_Ring_PSO_SCD is from r3pso,
while the SCD is an improved version from that used
by the Omni-optimizer technique. The novelty of the
MO_Ring_PSO_SCD is perhaps best to put into evidence
by comparing and contrasting it with the r3pso and Omni-
optimizer techniques and the related DN-NSGAII method.

The differences between MO_Ring_PSO_SCD and r3pso
are as follows. First, r3pso is a single objective opti-
mization algorithm. In contrast, MO_Ring_PSO_SCD is
a multiobjective optimization technique. Second, the purpose
of r3pso is to identify multiple local and global optima for sin-
gle optimization problems, while MO_Ring_PSO_SCD aims
to obtain several PSs (each containing multiple solutions) that
correspond to the same PF. Therefore, the number of solu-
tions that MO_Ring_PSO_SCD maintains is much greater
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Fig. 4. Distribution of MMF4’s PSs.

than that for r3pso method. Third, r3pso selects the gbest
and nbest only according to fitness values, while in contrast,
MO_Ring_PSO_SCD selects the gbest and nbest according to
a dominated relationship and the SCD. There are numerous
differences between MO_Ring_PSO_SCD and the Omni-
optimizer method. The Omni-optimizer technique is similar
to NSGAII, with a population that evolves by crossover and
mutation. In contrast, the particles in MO_Ring_PSO_SCD
are led by pbest and gbest. Both the MO_Ring_PSO_SCD
and the Omni-optimizer methods make use of the CD in
the decision space and objective space. However, the way
MO_Ring_PSO_SCD deals with boundary points in objective
space is significantly different from the Omni-optimizer. In
addition, the topological structure in MO_Ring_PSO_SCD is
fundamentally different from that of the Omni-optimizer.

The differences between MO_Ring_PSO_SCD and DN-
NSGAII are presented as follows.

1) DN-NSGAII is modified from NSGAII. In DN-NSGAII,
the particles are changed by crossover and muta-
tion. However, the framework of MO_Ring_PSO_SCD
is multiobjective PSO. The positions of particles are
changed according to pbest and gbest.

2) There is no specific topology in DN-NSGAII. In
contrast, ring topology is employed in
MO_Ring_PSO_SCD. Each particle transfers
information with its immediate neighbors.

3) The CD in DN-NSGAII represents distance in decision
space. However, MO_Ring_PSO_SCD employs SCD
(the SCD makes use of distance in both decision space
and objective space).

The MO_Ring_PSO_SCD, Omni-optimizer and DN-
NSGAII algorithms are tested on MMF4 to reveal their
differences in convergence behavior (note that r3pso is a sin-
gle objective optimization algorithm, so it cannot be tested on
the multimodal multiobjective problems and hence has been
excluded from this comparison study). Test function MMF4,
whose details are given in Appendix A in the supplementary
material,1 has four PSs in its feasible region with a distribution
as shown in Fig. 4. In Fig. 4, x1 and x2 represent the 2-D of the
decision space. The feasible region of MMF4 is divided into
four subregions, namely Region 1 {x1 ∈ [−1, 0], x2 ∈ [1, 2]},
Region 2 {x1 ∈ (0, 1], x2 ∈ [1, 2]}, Region 3 {x1 ∈ [ −
1, 0], x2 ∈ (0, 1]}, and Region 4 {x1 ∈ (0, 1], x2 ∈ [0, 1)}.
There is one PS in each region. The proportion of solutions

1All the supplementary materials for this article can be accessed from the
website: http://www5.zzu.edu.cn/ecilab/info/1026/1091.htm.

Fig. 5. Convergence behaviors of three algorithms: MO-Ring-PSO-SCD,
Omini-optimizer, and DN-NSGAII.

in each region is calculated for every generation to show the
algorithm’s convergence behavior. Ideally, if the algorithm per-
forms well on MMF4, the proportion of solutions in each of
the four regions should converge to 25%. In this example,
the population size of MO_Ring_PSO_SCD, Omni-optimizer,
and DN-NSGAII is set to 800 and the maximal generation
number is set to 100. All other parameters are the same as
reported in Section VI-A. Each algorithm is run 20 times and
the mean proportions of their solutions in each region from the
1st to the 100th generation are plotted in Fig. 5. The top fig-
ure of Fig. 5 shows the convergence behavior of the proposed
MO_Ring_PSO_SCD algorithm. As shown, the proportions
of solutions in Regions 1 and 3 increase to a small extent
while the proportions of Regions 2 and 4 solutions decrease
slightly as the generation number reaches approximately 20. At
approximately the 50th generation the proportion of solutions
in each region approaches 25%. In addition, these proportions
remain relatively constant from the 50th to 100th generation.
In contrast, the convergence behavior of the Omni-optimizer
method, as shown in the lower-left graph of Fig. 5, is infe-
rior to that of MO_Ring_PSO_SCD. In fact, from the 40th to
100th generations the proportions of solutions for the Omni-
optimizer approach in Regions 1 and 4 are larger than those
in Regions 2 and 3. The proportion of solutions in each region
fluctuates frequently throughout generations. The convergence
behavior of DN-NSGAII is shown in the lower-right graph of
Fig. 5. The proportions of solutions in Regions 2 and 3 are
much greater than those of Regions 1 and 4. In addition,
the proportion of solutions in each region is not constant as
a function of the generation number.

From the above discussion, it follows that a central nov-
elty of the MO_Ring_PSO_SCD is that the particles are
led by pbest and gbest, where each particle transfers infor-
mation with its immediate neighbors, and a dominance
relationship and the SCD are employed for leader selec-
tion. The combination of these operations makes it possible
for the MO_Ring_PSO_SCD method to solve multimodal
multiobjective problems in an effective fashion.
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TABLE I
FEATURES OF TEST FUNCTIONS

IV. TEST FUNCTIONS

Since the state of the knowledge for solving multimodal
multiobjective optimization problems is still in its early stages
of development, there are very few benchmark test functions
documented in the literature. One of the aims of this paper is
to define a set of MMFs with the following characteristics.

1) They should be multiobjective optimization functions.
2) They should have more than one PS that corresponds to

the same PF.
3) They should vary in their extent of complexity.
A simple way to design an MMF is to modify single modal

multiobjective benchmark functions. First, the feasible region
should be enlarged if it is too small. Then, novel PSs are
copied into the new feasible region through shift or symmetry
transformation. The complexity of MMF relates to the number
of different PSs and the overlap among them.

Two simple MMFs, namely SS-UF1 and S-UF3, were
designed in precious work by the Liang et al. [4]. For the
details to design MMFs please refer to [4]. In this paper, these
two MMFs are renamed as MMF1 and MMF2. In addition, six
more complicated test functions MMF3–MMF8 are designed.
Three other test functions, called SYM-PART simple [27],
SYM-PART rotated [27], and the Omni-test function [20] with
n = 3, are included in the scope of this paper.

Table I shows the most relevant features of the eleven test
functions under consideration. The first column of Table I lists
the names of all test functions considered in this paper. The
second column, entitled Number of PSs reflects how many PSs
correspond to the same PF, and the third column, Overlap in
every dimension, indicates with a check mark(�) when the PSs
have overlaps in every dimension and with an mark (✗) if they
do not. Generally speaking, a test function whose PSs over-
lap in every dimension is more complex than a test function
which does not show the same extent of dimensional overlap.
In addition, a function is more complex when it has a larger
number of PSs.

As is shown in Table I, the functions MMF1 and
MMF2 have two PSs, and their PSs do not overlap in every
dimension. Hence, MMF1 and MMF2 are relatively simple
functions. Next, MMF3 has two PSs which overlap in every
dimension. Therefore, MMF3 is more complex than MMF1
and MMF2. Function MMF4 and MMF8, which in contrasts

to the other functions in the table has a concave PF, have four
PSs that do not overlap in every dimension. MMF6 have four
PSs which overlap in every dimension. The PSs of MMF7 are
irregular curves which are shown in Appendix A in the sup-
plementary material. Function SYM-PART rotated is generated
from a simple rotation of SYM-PART simple, and is thus more
complex than SYM-PART simple. To make the visualization
more accessible, the dimension of the decision space n is set to
3 in the Omni-test, which is indicated in Table I. Omni-test has
the largest number of PSs which overlap in every dimension.
Therefore, Omni-test is the most complex among the eleven
test functions. Further details of the eleven test functions are
given in Appendix A in the supplementary material.

V. PERFORMANCE INDICATORS

In this paper, the PSP

PSP = CR

IGDX
(8)

is proposed as a new indicator to reflect the similarity between
the obtained PSs and the true PSs, where CR is the cover rate
and IGDX [22] is the inverted generational distance in the
decision space. The cover rate (CR) is a modification of the
maximum spread (MS) [28]

MS =
√√√√ 1

m

m∑

l=1

δl (9)

where

δl =
(

min
(
f max
l , Fmax

l

)− max
(
f min
l , Fmin

l

)

Fmax
l − Fmin

l

)2

(10)

and, where m is the dimensionality of objective space, f max
l and

f min
l are, respectively, the maximum and minimum of obtained

PF for the lth objective, Fmax
l and Fmin

l are the maximum and
minimum of the true PF for the lth objective. Note that if
f min
l ≥ Fmax

l , then δl = 0. The MS is conceived to reveal how
well obtained PF covers the true PF. The larger the MS value
is, the better the obtained PF covers the true PF. The limiting
value MS = 1 means the obtained PF covers completely the
true PF.

The MS indicator has a number of disadvantages. In particu-
lar, it ignores the situation, where f max

l ≤ Fmin
l . In addition, the

mean value of δ (given by (1/m)
∑m

l=1 δl) is heavily affected
when δl = 1, because the maximum of δ is equal to 1. To intro-
duce an indicator into decision space and properly represent
overlap ratio between true PS and obtained PS, we introduce
CR defined as

CR =
(

n∏

l=1

δl

)1/2n

(11)

δl =

⎧
⎪⎪⎨

⎪⎪⎩

1 Vmax
l = Vmin

l
0 vmin

l ≥ Vmax
l

∥∥vmax
l ≤ Vmin

l(
min(vmax

l ,Vmax
l )−max

(
vmin

l ,Vmin
l

)

Vmax
l −Vmin

l

)2

otherwise

(12)
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(a) (b)

(c) (d)

Fig. 6. Four scenarios for comparing the performance of the MS and CR
indicators. (a) MS = 1, CR = 1. (b) MS = 1, CR = 0. (c) MS = 0.5,
CR = 0.5. (d) MS = 0.7, CR = 0.

where n is the dimensionality of decision space; vmax
l and vmin

l
are, respectively, the maximum and minimum of obtained PS
for the lth variable; Vmax

l and Vmin
l are the maximum and

minimum of the true PS for the lth variable.
Four representative scenarios are shown in Fig. 6 to illustrate

the differences in the values of the MS and CR indicators. It
can be concluded in Fig. 6 that, in scenarios (a) and (c), MS is
equal to CR. However, in scenarios (b) and (d), it is obvious
that there is no overlap between true PS and obtained PS,
but the MS values are not equal to 0 while the CR adopts
the value 0 accurately reflecting the total lack of overlap. It
is clear that CR is able to adequately address the situation,
where f max

l ≤ Fmin
l ; furthermore, in contrast to the MS, the

CR remains unaffected by the limiting case, where δl = 1.
Therefore, the proposed indicator CR is more appropriate than
MS. In the conclusion, CR can show overlap ratio between true
PS and obtained PS. Larger CR values are desirable.

However, CR cannot show the diversity and convergence
of the obtained solutions. A new indicator inverted genera-
tional distance (IGDX) is proposed by Zhou et al. [22] to
evaluate the diversity and convergence in the decision space.
IGDX values represent the average distance (Euclidean dis-
tance) between the obtained solutions and reference solutions
(true PS) in decision space. Let P∗ denote a set of uniformly
distributed points along the true PS. Let O denote a set of
obtained solutions. The IGDX can be calculated as the average
distance from P∗ to O

IGDX
(
O, P∗) =

∑
v∈P∗ d(v, O)

|P∗| (13)

where d(v, O) is the minimum Euclidean distance between v
and the points in O. Smaller IGDX values are desirable.

CR and IGDX are combined as PSP according to (8). PSP
can not only reflect the convergence of obtained PS, but
also represent overlap ratio between true PS and obtained
PS. Larger PSP values are desirable.

(a) (b)

(c) (d)

Fig. 7. Comparison of PSs obtained by multiobjective PSO algorithms
on MMF3. PSs obtained by (a) MO_Ring_PSO_SCD, (b) MO_PSO_SCD,
(c) MO_Ring_PSO, and (d) MO_PSO.

VI. EXPERIMENTS AND ANALYSIS

A. Experimental Setups

As is well known, different algorithms may favor different
population sizes. In addition, the optimal population size is dif-
ferent for different test functions. Therefore, it is impossible to
set one population size that is suitable for all algorithms and
test functions. In Sections VI-B and VI-C a population size of
800 is taken as an example to put into evidence details of the
results produced by the algorithms. Then Section VI-D shows
experimental results with different population sizes to properly
analyze the effect of population size. For the purpose of unbi-
ased comparison, the maximal number of evaluations is set to
80 000 for all the algorithms. All the experiments are carried
out 20 times. In MO_Ring_PSO_SCD, both C1 and C2 are set
to 2.05 and W is set to 0.7298 in (5). Other parameters are
set as the corresponding references [4], [20], [23], [29], [30].

B. Experimental Verification of the Effectiveness of the
Proposed Algorithm

To demonstrate the effectiveness of ring topology and of
the SCD, multiobjective PSO algorithms with and without
ring topology or SCD are tested on all the test functions.
The PSP values of the four algorithms are analyzed by
rank sum test. The PSP values and h values of rank sum
test are shown in Table II. The Pareto-optimal solutions
obtained by multiobjective PSO algorithms on MMF3 are
shown in Fig. 7. In Table I and Fig. 7, MO_PSO represents
simple multiobjective PSO without ring topology and SCD.
MO_Ring_PSO is multiobjective PSO with only ring topol-
ogy. MO_PSO_SCD is multiobjective PSO with only SCD.
MO_Ring_PSO_SCD is multiobjective PSO with both ring
topology and SCD. It can be concluded from Table II and
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TABLE II
PSP VALUES OF MULTIOBJECTIVE PSO WITH AND WITHOUT RING TOPOLOGY OR SCD

Fig. 7 that MO_Ring_PSO is much better than MO_PSO,
while MO_PSO_SCD is a little better than MO_PSO. In short,
the inclusion of both ring topology and SCD are effective
for improving performance. In addition, MO_Ring_PSO_SCD
is the best performer over all the eleven test functions. The
rank sum test results show that there are significant differences
among MO_Ring_PSO_SCD and the other three algorithms.
Why these two operates are effective in solving multimodal
multiobjective optimization? The reasons are analyzed in the
following paragraphs.

Ring topology enables the proposed algorithm to locate
enough Pareto-optimal solutions. It is proved that ring topol-
ogy induces stable niches in decision space [12]. Therefore,
the particles evolve within their own niches. Every niche has
its own leader. If the leaders are well-distributed in the deci-
sion space, it is more likely to locate more Pareto-optimal
solutions.

The introducing of SCD improves the population diversity
and helps maintain more Pareto-optimal solutions. The less
crowded solutions are preferred. Therefore, the diversity of
obtained solution is improved. In environmental selection, if
solutions are crowded in objective space but far away from
each other in decision space, they are able to survive according
to their SCDs.

In the conclusion, both ring topology and SCD make
MO_Ring_PSO_SCD more excellent in solving multimodal
multiobjective problems.

C. Comparison With Other Algorithms

MO_Ring_PSO_SCD is compared with five algorithms on
eleven test functions. Two measure indicators, PSP and hyper-
volume (Hv) are adopted to compare the performances of
different algorithms. PSP reflects the quality of the obtained
PSs in decision space and Hv reflects the quality of obtained

PF in objective space. Larger Hv and PSP are more favorable.
The statistical results of PSP values are shown in Fig. 8 by
box-plots. The Hv values of different algorithms are shown in
Table III.

In Fig. 8, MO_Ring_PSO_SCD, Omni-optimizer, DN-
NSGAII, NSGAII, MOEAD, and SPEA2 are numbered 1–6,
respectively. As can be verified from the results, the mean
PSP values for MO_Ring_PSO_SCD are highest on all test
functions except MMF7 since the PSs of MMF7 are in an
irregular geometry. Omni-optimizer ranks second on MMF1
and MMF3. On the other test functions, the performances of
Omni-optimizer and DN-NSGAII are similar. These two algo-
rithms are a somewhat better than NSGAII, MOEAD, and
SPEA2, because that both Omni-optimizer and DN-NSGAII
employ the CD in the decision space for environmental selec-
tion. However, the PSP values of Omni-optimizer and DN-
NSGAII are not stable, because their variances are relatively
large.

The reason why NSGAII, MOEAD, and SPEA2 perform
poorly on all test functions is that these methods consider only
the CD in the objective space. The PSP values of all algo-
rithms are lowest on Omni-test among all the test functions,
which can demonstrate that Omni-test is the most complex test
function among them.

In Table III, the Hv values of Omni-optimizer on MMF2,
MMF3, and MMF6 are highest among the algorithms. NSGAII
obtains the highest Hv values on MMF1, MMF5, MMF7,
MMF8, and Omni-test functions. MOEAD is the best on
MMF4 and SYM-PART simple test functions. DN-NSGAII
obtains the best Hv value on SYM-PART rotated test func-
tion. MO_Ring_PSO_SCD is comparable with all the other
algorithms on all the eleven test functions, though it is not the
best. In fact, the Hv values for all the algorithms are close to
each other. The reason is that all the algorithms consider the
distribution in the objective space.
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Fig. 8. Box-plots of PSP values of different algorithms on eleven test functions. The numerals on the horizontal axis of each plot indicate the following
algorithms: 1 = MO_Ring_PSO_SCD, 2 = mni-optimizer, 3 = DN-NSGAII, 4 = NSGAII, 5 = MOEAD, and 6 = SPEA2. (a) MMF1. (b) MMF2. (c) MMF3.
(d) MMF4. (e) MMF5. (f) MMF6. (g) MMF7. (h) MMF8. (i) SYM-PART simple. (j) SYM-PART rotated. (k) Omni-test.

TABLE III
Hv VALUES OF DIFFERENT ALGORITHMS

Two typical test functions SYM-PART simple and Omni-
test are chosen to reveal the obtained PSs and PF
for the algorithms. The PSs obtained by different algo-
rithms on SYM_PART simple and Omni-test are shown in
Figs. A12 and A13 in Appendix B in the supplementary
material. It is obvious that MO_Ring_PSO_SCD obtains the
largest number of Pareto-optimal solutions. The SYM-PART
simple test function has nine PSs. Omni-optimizer and DN-
NSGAII obtain five of them (several of the obtained PSs are
not complete). MOEAD obtains only one PS. A similar situa-
tion arises with the Omni-test function, as shown in Fig. A12
in the supplementary material, which illustrates the fact that

it is difficult to locate and maintain several PSs simultane-
ously without niching operation. The PFs obtained by different
algorithms on SYM-PART simple and Omni-test are shown
in Figs. A14 and A15 in Appendix B in the supplementary
material. From these figures, it is concluded that all of the
six algorithms obtain well-distributed PF on the SYM-PART
simple test function. Note that under the Omni-test, the PF of
the MO_Ring_PSO_SCD method is not as good as the PFs of
Omni-optimizer, DN-NSGAII, and of NSGAII.

In the conclusion, MO_Ring_PSO_SCD obtains the best
distribution in decision space on all the eleven test problems
except MMF7. Though MO_Ring_PSO_SCD does not obtain
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Fig. 9. PSP values with different population sizes. PSP values on (a) MMF1 with different population sizes, (b) MMF2 with different population sizes,
(c) MMF3 with different population sizes, (d) MMF4 with different population sizes, (e) SYM-PART rotated with different population sizes, and (f) Omni-test
with different population sizes.

the best distribution in objective space, it is competitive with
that of the other algorithms.

D. Experimental Results With Different Population Sizes

The population size affects the performance of most algo-
rithms. In this section, different population sizes are investi-
gated for six of the test functions. The mean PSP values for
a total of 20 experimental runs are presented in Fig. 9(a)–(f).
The figures show that MO_Ring_PSO_SCD achieves the
largest PSP values under different population sizes for the test
functions under consideration. The results validate the claim

that the proposed method is effective in solving multimodal
multiobjective problems.

The results reported in Fig. 9 also confirm that, as expected,
the performance of the algorithms is affected by varying pop-
ulation size. However, the optimal population size for each
algorithm varies for the different test functions. With respect
to MMF1, the Fig. 9(a) shows that the PSP values of all algo-
rithms increases along with the population size, except for
the SPEA2 and MOEAD methods. The results obtained with
MO_Ring_PSO_SCD do not change much on MMF2, and
the PSP value of MO_Ring_PSO_SCD is largest when the
population size is 400. In contrast, Omni-optimizer achieves
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its largest PSP values when the population size is 800. As for
MMF3 both Omni-optimizer and NSGAII perform best with
a population size of 800. SPEA2 performs better than Omni-
optimizer, DN-NSGAII, NSGAII, and MOEAD on MMF4.
Therefore, SPEA2 is relatively suitable for problems of the
kind represented by MMF4. Finally, from Fig. 9(e) and (f)
it is noted that, with the exception of MO_Ring_PSO_SCD,
which displays consistently good performance, all the other
algorithms perform poorly on the relatively complex functions.

VII. CONCLUSION

To solve multimodal multiobjective problems,
a multiobjective PSO using ring topology and special
crowding distance is proposed. The ring topology helps
to induce stable niches, so that much more Pareto-optimal
solutions can be located. In addition, the special crowding
distance considers the crowding distance both in decision
and objective space to maintain multiple PSs. The proposed
algorithm is compared with five algorithms, three of which
are state-of-the-art multiobjective algorithms and two are
multimodal multiobjective algorithms. All the algorithms
are tested on eleven MMFs. Results show that the proposed
algorithm is superior to the others in decision space distribu-
tion. However, MO_Ring_PSO_SCD does not perform best
on MMFs with irregular PSs, such as MMF7. In addition,
Omni-optimizer and NSGAII are better than the proposed
algorithm in the objective space.

In our future work, new MMFs of different complexity
will be proposed. Moreover, the MO_Ring_PSO_SCD will be
improved and it will be applied to real world applications.
Only problems with multiple global PSs are included in this
paper. Arguable, there must be problems with multiple local
PSs which have been excluded from the scope of this paper
and that should be a relevant topic for future research.

An intriguing approach to evaluate is the inclusion
of multimodal many-objective optimization test functions,
for which the ε-dominance distance approach in [31] has
performed to advantage. The algorithm proposed by the
authors outperforms the ε-dominance distance and the CD
in NSGAIIr [32], though details are omitted in this paper
for brevity. Future work should include other varieties of
test functions to develop a more comprehensive compar-
ative performance analysis for multimodal many-objective
optimization problems.
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APPENDIX  

A. Details of test functions 

MMF1 [4] 
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where 11 3x  , 21 1x   . 
Its true PS is 
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     (A2) 

where 11 3x  . 
Its true PF is 

 2 11f f   (A3) 

where 10 1f  . 

Its true PS and PF are illustrated in Fig. A1. 

 
  (a) True PSs of MMF1 

 
  (b)True PF of MMF1 

Fig. A1.  Illustration of the true PSs and PF of MMF1. 
 
 
 
 
 
 
 
 

MMF2 [4] 
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where 10 1x  , 20 2x  . 

Its true PS is 
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Its true PF is 

 2 11f f   (A6) 

where 10 1f  . 

Its true PS and PF are illustrated in Fig. A2. 

 
  (a) True PSs of MMF2 

 
  (b)True PF of MMF2 

Fig. A2.  Illustration of the true PSs and PF of MMF2. 
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where 10 1x  , 20 1.5x  . 

Its true PS is 
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Its true PF is 

 2 11f f   (A9) 

where 10 1f  . 

Its true PS and PF are illustrated in Fig. A3. 

 
(a) True PSs of MMF3 

 
  (b)True PF of MMF3 

Fig. A3.  Illustration of the true PSs and PF of MMF3. 
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where 11 1x   , 20 2x  . 

Its true PS is 
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Its true PF is 
 2

2 11f f   (A12) 

where 10 1f  . 

Its true PS and PF are illustrated in Fig. A4. 

 
  (a) True PSs of MMF4 

 
  (b)True PF of MMF4 

Fig. A4.  Illustration of the true PSs and PF of MMF4. 
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MMF5 
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(A13) 
where 11 3x   , 21 3x  . 

Its true PS is 
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Its true PF is 

 2 11f f    (A15) 

where 10 1f  .  

Its true PS and PF are illustrated in Fig. A5. 

 
(a) True PSs of MMF5 

 
(b)True PF of MMF5 

Fig. A5.  Illustration of the true PSs and PF of MMF5. 
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(A16) 

where 11 3x   , 21 2x  . 

Its true PS is 
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                        (A17) 

Its true PF is 

 2 11f f    (A18) 

where 10 1f  .  

Its true PS and PF are illustrated in Fig. A6. 

 
(a) True PSs of MMF6 

 
(b)True PF of MMF6 

Fig. A6.  Illustration of the true PSs and PF of MMF6. 
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where 11 3x  , 21 1x   . 

Its true PS is 
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where 11 3x  . 

Its true PF is 

 2 11f f    (A21) 

where 10 1f  .  

Its true PS and PF are illustrated in Fig. A7. 
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(a) True PSs of MMF7 

 
(b)True PF of MMF7 

Fig. A7.  Illustration of the true PSs and PF of MMF7. 
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(A22) 
where 1x    , 20 9x  . 

Its true PS is 
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where 1x    . 

Its true PF is 

 2
2 11f f    (A24) 

where 10 1f  .  

Its true PS and PF are illustrated in Fig. A8. 

 
(a) True PSs of MMF8 

 
(b)True PF of MMF8 

Fig. A8.  Illustration of the true PSs and PF of MMF8. 

 
SYM-PART simple [27] 
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where [ 20,20]ix   . 

Its true PS is 
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Its true PF is 
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where [0,1]v . 

In this paper, 1a  , 10b  , 8c  . 
Its true PS and PF are illustrated in Fig. A9. 

 
(a) True PSs of SYM-PART simple 

 
  (b)True PF of SYM-PART simple 

Fig. A9.  Illustration of the true PSs and PF of SYM-PART simple. 

 
SYM-PART rotated [27] 
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where [ 20,20]ix   . 

 Its true PS is 
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where 1 [ , ]x a a  . 

 Its true PF is 
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where [0,1]v . 

In this paper,
4

w


 , 1a  , 10b  , 8c  . 

Its true PS and PF are illustrated in Fig. A10. 

 
(a) True PSs of SYM-PART rotated 

 
(b)True PF of SYM-PART rotated 

Fig. A10. Illustration of the true PSs and PF of SYM-PART rotated.  

 
Omni-test [20] 
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where [0,6]ix  . 

Its true PS is 
 [2 1,2 3 / 2]ix m m    (A39) 

where m  is integer. 
Its true PF is 

 2 2
2 1f n f    (A40) 

where 1 0n f   . 

When 3n  , its true PS and PF are illustrated in Fig. A11. 
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(a) True PSs of Omni-test 

 
(b) True PF of Omni-test 

 
Fig. A11. Illustration of the true PSs and PF of Omni-test. 

 

B. The PSs and PF obtained by different algorithms on SYM_PART simple and Omni-test 

 

                     
(a) PSs obtained by MO_Ring_PSO_SCD                                                          (b) PSs obtained by Omni-optimizer 

                     
 (c) PSs obtained by DN-NSGAII                                                                    (d) PSs obtained by NSGAII 
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(e) PSs obtained by MOEAD                                                                   (f) PSs obtained by SPEA2 

Fig. A12. The comparison of PSs obtained by different algorithms on SYM-PART simple test function. 

               
(a) PSs obtained by MO_Ring_PSO_SCD                                 (b) PSs obtained by Omni-optimizer 

               
(c) PSs obtained by DN-NSGAII                                                      (d) PSs obtained by NSGAII 

               
  (e) PSs obtained by MOEAD                                                       (f) PSs obtained by SPEA2 

Fig. A13. The comparison of PSs obtained by different algorithms on Omni-test function. 
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                                 (a) PF obtained by MO_Ring_PSO_SCD                                                       (b) PF obtained by Omni-optimizer 

                     
                                            (c) PF obtained by DN-NSGAII                                                                   (d) PF obtained by NSGAII 

                    
(e) PF obtained by MOEAD                                                                  (f) PF obtained by SPEA2 

Fig. A14. The comparison of PF obtained by different algorithms on SYM-PART simple test function. 

                    
 (a) PF obtained by MO_Ring_PSO_SCD                                                         (b) PF obtained by Omni-optimizer 
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(c) PF obtained by DN-NSGAII                                                             (d) PF obtained by NSGAII 

                    
  (e) PF obtained by MOEAD                                                                              (f) PF obtained by SPEA2 

Fig. A15. The comparison of PF obtained by different algorithms on Omni-test test function. 
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