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A B S T R A C T

This paper proposes a novel scalable multimodal multiobjective test problem suite. The proposed test problems
have various properties, such as presence of local Pareto optimal set (PS), scalable number of PSs, nonuniformly
distributed PSs, discrete Pareto front (PF), and scalable number of variables and objectives. All of the test
problems proposed in this paper are continuous optimization problems. Therefore, they can be used to measure
different capacities of multimodal multiobjective continuous optimization algorithms. Moreover, a landscape
visualization method for multiobjective problems is proposed to show the properties of the multimodal multi-
objective test problems. Based on the landscapes, the characteristics of these problems are analyzed and char-
acterized. Furthermore, the existing multimodal multiobjective optimization algorithms and several popular
multiobjective algorithms are tested and compared with the novel test problem suite. Then, a discussion on the
desired properties of multimodal multiobjective optimization algorithms and future works on multimodal mul-
tiobjective optimization are presented.
1. Introduction

In real-world applications, many optimization problems are “multi-
modal”, that is, they have multiple satisfactory solutions. The traditional
multimodal optimization [1–6] problem refers to a single objective
problem with multiple global/local peaks. In fact, many multiobjective
optimization problems are also “multimodal”. To be specific, there are
multiple global or local Pareto optimal sets (PSs) in some real-world
multiobjective problems, which are called multimodal multiobjective
optimization (MMO) problems [7–10].

It is of significant importance to find multiple PSs of MMO problems.
The first reason is that different PSs may be suitable for different decision
makers. Second, providing multiple PSs helps reveal the potential prop-
erties of the problems. Third, shifting from one PS to another helps solve
dynamic optimization problems [11]. Fourth, offering multiple PSs in-
creases the probability of finding robust solutions. However, the study of
MMO is still in the emerging stage. Although many real-word applica-
tions [12,13] are actually MMO problems, to date the researchers have
not investigated them in depth.

Fortunately, there are several pioneering studies on MMO. Deb
ue), qby1984@hotmail.com (B. Q
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proposedMMO problems in Ref. [7], but no special algorithm is designed
to solve this kind of problems. Later, he designed the Omni-optimizer
[14] aiming to solve different types of problems, including uni/m-
ultimodal single/multiobjective problems. The Omni-optimizer performs
much better than the original NSGAII [15]. Rudolph et al. [16] analyzed
the capabilities of evolutionary multiobjective algorithms to maintain
multiple Pareto subsets and designed the SYM-PART test problem. Ishi-
buchi et al. proposed multimodal multiobjective test problems for visu-
ally examining diversity maintenance behavior in the decision space [17,
18]. Although the number of objectives is scalable in these test problems,
the number of decision variables is fixed to two. Subsequently, Ishibuchi
et al. [19] and Masuda et al. [20] proposed multimodal multiobjective
test problems with scalable number of decision variables. Recently, Liang
et al. [9] proposed two MMO test problems and designed DN-NSGAII to
solve them. Further, Yue et al. [8] designed six more MMO test problems
and proposed MO_Ring_PSO_SCD to solve these problems. In addition,
they developed a novel performance indicator PSP to compare the per-
formance of different algorithms on MMO problems. Subsequently, some
new algorithms for MMO were proposed. Liu et al. [21] proposed a
double-niched evolutionary algorithm and analyzed its behavior on
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Fig. 1. Illustration of local PS, global PS, local PF and global PF.
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polygon-based problems. Tanabe et al. [22] proposed a
decomposition-based evolutionary algorithm for MMO. Liu et al. [23]
proposed a multimodal multiobjective evolutionary algorithm using
two-archive and recombination strategies and designed several novel
multimodal multiobjective test problems.

Since many researchers are becoming interested in MMO [7–10,14,
16,24,25], there is definitely a need for designing MMO benchmark test
problems to assess and compare the effectiveness of the newly developed
MMO algorithms. Benchmark test problems are of great significance for
the developing optimization algorithms [26]. First, test functions test an
algorithm's capacity to tackle a certain aspect of real-world problems.
Second, they can be used to compare several algorithms systematically.
Third, they may help to understand the working principles of different
algorithms. Fourth, they inspire the development of novel algorithms.

Several MMO test problems have been proposed in the past decades.
Rudolph et al. [16] designed the SYM-PART test problem with a
controllable number of PSs. However, SYM-PART heavily relies on
symmetry properties of the underlying single objective functions. In
addition, the number of its variables and objectives are unscalable. Deb
et al. [14] designed the Omni-test function which has 3n (n is the number
of variables) PSs corresponding to the same PF. Although both the
numbers of variables and of PS are both scalable, the number of objec-
tives is fixed. In Ref. [9], Liang et al. proposed two simple multimodal
multiobjective test problems—SS-UF1 and S-UF3. They are modified
from unimodal multiobjective test problems by symmetry and shift.
Subsequently, Liang's research team designed six more test problems [8].
However they still have several shortcomings: (i) the number of PSs is
fixed; (ii) the dimensions of variables and objectives are low and un-
scalable; (iii) only global PSs are known, and their local PSs are complex
and unknown.

Test problems are desired to test algorithms' ability to deal with a
special aspect of real-world problems. Therefore, a benchmark test
problem suite should include different types of characteristics of real-
word problems. As for MMO, the test problem suite is desired to have
the following properties:

1) Coexistence of global PSs and local PSs;
2) Controllable number of PSs;
3) Various PSs shapes;
4) All the PSs are known;
5) Scalable number of variables;
6) Scalable number of objectives.

Based on the above considerations, a novel MMO benchmark test
problem suite is designed in this paper. The difficulty of each proposed
test problem is controllable and they can be used to test different aspects
of MMO algorithms. The main contributions of this paper are listed as
follows:

1) Three different frameworks to generate MMO test problems are
presented.

2) A test problem suite containing twenty-three test problems is
established.

3) A way to visualize the landscape of MMO test problems is proposed.
4) The characteristics of all the test problems in the test suite are

analyzed based on their landscapes.
5) The existing MMO algorithms and several most popular multi-

objective algorithms are tested on the novel benchmark test problem
suite.

2. Related definitions

There are different definitions about domination, global/local PS and
global/local PF [7–10,23,27]. In this paper, the definitions are in line
with those in Refs. [7–9,23], which are familiar to the researchers in the
field of evolutionary computation.
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Given a multiobjective optimization problem Min f
!ð x!Þ ¼ ½f1ð x!Þ;

f2ð x!Þ; …; fmð x!Þ�, a feasible solution x1
�! is said to dominate the other

feasible x2�! if both of the following conditions are met [7]:

1) The solution x1�! is no worse than x2�! for all objectives, i.e. fið x1�!Þ �
fið x2�!Þ for i ¼ 1; … ; m;

2) The solution x1
�! is strictly better than x2

�! for at least one objective,
i.e. fið x1�!Þ < fið x2�!Þ for i 2 ½1;m�.

A solution is called a nondominated solution if it is not dominated by
any other solution. All nondominated solutions constitute a Pareto optimal
set (PS). The set of all the vectors in the objective space that corresponds
to the PS is called the Pareto front (PF).

The local PS, PF and global PS, PF [7] are defined as follows:
Local Pareto optimal set (Local PS): For an arbitrary member x! in a

solution set PL, if there exists no neighborhood solution y! satisfying
k y!� x!k∞ � σ (σ is a small positive value), dominating any member in
set PL, then the solution set PL is defined as the local PS;

Global Pareto optimal set (Global PS): For an arbitrary member in a
solution set PG, there exists no solution in the feasible space dominating
any member in the set PG, then the solution set PG is defined as the global
PS.

Local Pareto Front (Local PF): The set of all the vectors in the
objective space that corresponds to the local PS is defined as the local
Pareto Front.

Global Pareto Front (Global PF): The set of all the vectors in the
objective space that corresponds to the global PS is defined as the global
Pareto Front.

Fig. 1 shows a bi-objective minimization problem with one local PS
and one global PS. Solid lines along with stars represent the global PS/PF,
while dashed lines with circled dots represent the local PS/PF. Although
the local PF is dominated by the global PF, it dominates individuals in its
neighborhood as defined above. Note that a certain multimodal multi-
objective problem may have several local PSs and global PSs.

A multiobjective optimization problem is an MMO problem if it meets
one of the following conditions:

1) It has at least one local Pareto optimal solution;
2) It has at least two global Pareto optimal solutions corresponding to

the same point on the PF.

The local Pareto optimal solution [22] represents the solution that is
not dominated by any neighborhood solution. The global Pareto optimal
solution [22] is not dominated by any solutions in the feasible space.
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3. Design approaches and desired characteristics of MMO test
problems

3.1. Design approach

Two main approaches are used to design MMO test problems. The
first generates from unimodal multiobjective problems, while the second
generates from multimodal single objective problems. Unimodal multi-
objective problems are multiobjective problems with only one global PS
and without any local PS. Multimodal single objective problems refer to
single objective problems with multiple global or local peaks. An intro-
duction to these two methods is presented in the following texts.

3.1.1. Generating MMO test problems from unimodal multiobjective
problems

MMO problems can be generated from unimodal multiobjective
problems through copying PS by shift or symmetry transformation [8,9].
This is an intuitive way to reproduce several PSs to formulate MMO
problems. Fig. 2 illustrates the method to copy PS by shift or symmetry
transformation. The continuous line represents the original PS termed
PS1, PS2 is generated by shift and PS3 is generated by symmetry trans-
formation. The main advantage of this approach is that it is simple and
intuitive. Moreover, the derived MMO problems through this approach
inherit all the PF characteristics of the original test problem. If this
method is applied to existing unimodal multiobjective test problems, a
large number of MMO test problems will be created. However, this
approach has two disadvantages. First, all the reproduced PSs are of the
same shape. Second, the derived MMO problems have only global PF
because all the reproduced PSs correspond to the same PF.

3.1.2. Generating MMO test problems from multimodal single objective
problems

Another way to design MMO problems is embedding multimodal
single objective problems [28,29] as one component of the MMO prob-
lem, that is used in Refs. [7,26,27,30]. The modality of the reproduced
MMO problems is controlled by the multimodal single objective prob-
lems. To describe this method clearly, a simple bi-objective optimization
problem with two variables is taken as an example.

The bi-objective optimization problem is shown in Eq. (1).

Min

8><
>:

f1ðx1; x2Þ ¼ x1

f2ðx1; x2Þ ¼ gðx2Þ
x1

(1)

where x1 > 0, gðx2Þ > 0 is a function of x2 only. In the objective space, f1
and f2 have the following relationship: f1ðx1; x2Þ � f2ðx1; x2Þ ¼ gðx2Þ. If
there is only one x2* meeting gðx2*Þ � gðx2Þ, i.e. gðx2Þ is a unimodal
Fig. 2. Copy PS by shift or symmetry transformation.
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function of x2, the bi-objective optimization problem described in Eq. (1)
has only one PF f1ðx1;x2Þ ⋅ f2ðx1;x2Þ ¼ gðx2*Þ. Therefore it is a unimodal
bi-objective optimization problem. However, if gðx2Þ is a multimodal
function of x2, for example gðx2Þ has two optima gðx21*Þ and gðx22*Þ, the
bi-objective optimization problem described in (1) has two PFs: PF1 f1ðx1;
x2Þ ⋅ f2ðx1;x2Þ ¼ gðx21*Þ, and PF2 f1ðx1;x2Þ � f2ðx1;x2Þ ¼ gðx22*Þ. Thus, it
turns into a multimodal bi-objective optimization problem.

The advantage of this approach is its flexibility. It can reproduce both
local and global PSs of different shapes.

3.2. Desired characteristics of MMO test problems

The constructed test problems should include multiple characteristics
to assess special aspects of the multiobjective optimization evolutionary
algorithm (MOEA). Furthermore, it can be used to evaluate the capability
of an MOEA to solve problems with a certain number of characteristics,
that is the robustness of an MOEA. Table 1 presents eight desired char-
acteristics of MMO test problems as well as comments on the
characteristics.

These characteristics are described in the following.
Characteristic 1: Scalable number of variables
It is beneficial if the number of variables is scalable. As the number of

variable increases, the dimension of decision space becomes higher.
Therefore, this characteristic enables the problem to test the ability of an
MOEA to solve problems with different number of variables.

Characteristic 2: Scalable number of objectives
The test problems are expected to have a scalable number of objec-

tives since the number of objectives influences the difficulty of test
problems [31]. As the number of objectives increase, it is difficult to have
enough convergence strength to the true PF. Hence, this characteristic
tests the convergence strength of an MOEA.

Characteristic 3: Pareto optima known
The true PS and PF are expected to be known enabling the measures

and analysis of results. Many performance indicators require information
of the true PS and PF. Therefore, knowing the location of the PS and PF is
necessary to evaluate the performance of a given MOEA accurately.

Characteristic 4: Pareto front geometry
This characteristic tests the capacity of an MOEA dealing with

different PF shapes. PF geometry includes convex/concave, linear/
nonlinear, continuous/discontinuous and so on. Some algorithms prefer
convex PF, while others may do well with concave PF. Generally, a
nonlinear PF is more difficult to be found than a linear PF. As for the
problem with disconnected PF, some algorithms may fail to find all re-
gions of the PF. In multiobjective problems with three or more objectives,
the shape of the PF is important as well as the curvature property. This is
because the performance of some well-known evolutionary multi-
objective algorithms depends on the shape of the PF [32].

Characteristic 5: Pareto set geometry
Diverse types of PS geometry are necessary to test an MOEA's ability
Table 1
Desired characteristics of MMO test problems.

Characteristic (C) Comment

C1: Scalable number of
variables

Increases flexibility, demands scalability

C2: Scalable number of
objectives

Increases flexibility, demands scalability

C3: Pareto optima known Facilitates the use of measures, analysis of results,
in addition to other benefits

C4: Pareto front geometry Convex/concave, linear/nonlinear, connected/
disconnected, or some combination

C5: Pareto set geometry Linear/nonlinear, connected/disconnected,
symmetric/nonsymmetric

C6: Scalable number of Pareto
set

Increases flexibility, demands scalability

C7: Coexistence of global and
local Pareto set

Encourages EAs to jump out of local optima
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to find different types of PS. The PS geometry can be linear/nonlinear,
connected/disconnected, symmetric/nonsymmetric and other complex
shapes. Some evolutionary multiobjective algorithms may perform well
only on particular PS shapes.

Characteristic 6: Scalable number of Pareto set
One important characteristic of MMO test problems is that they have

a scalable number of Pareto sets (including the number of global and
local PSs). Generally speaking, test problems with more PSs need more
computational resources and they may be more difficult to solve.

Characteristic 7: Coexistence of global and local Pareto set
An MMO test problem is expected to have both global and local PS.

Some algorithms may fall into local PS. Therefore, test problems with this
characteristic can test the global search ability of a certain algorithm.

4. MMO test problem generation frameworks

To generate MMO test problems with different characteristics, three
frameworks are presented. Their properties, advantages, and disadvan-
tages are analyzed in detail.

4.1. Framework 1

The design begins with a simple two-objective optimization test
problem framework with only two variables:

Min

8><
>:

f1ðx1; x2Þ ¼ x1

f2ðx1; x2Þ ¼ gðx2Þ
x1

(2)

where x1 > 0; gðx2Þ > 0 and g is a multimodal function. In objective
space, f1 and f2 have special relationship: f1 � f2 ¼ gðx2Þ.

The framework described in Eq. (2) has two intuitive yet useful
properties:

1) It has a local or global Pareto optimal solution x2 ¼ x*2, where x*2 is
the local or global optimum of g(x), and x1 is arbitrary in its range.

2) Its PF is a hyperbola (f1 � f2 ¼ gðx*2Þ).

Based on the above properties, different types of MMO test problems
can be constructed by changing the type of function g. The PSs and PFs
are easy to comprehended. The number of local or global PSs is easily
controlled by function g.

However, the framework has some shortcomings. First, the number of
objectives and variables are limited to two. Second, the shape of the PF is
fixed as a continuous hyperbola.

4.2. Framework 2

In real-world applications, some of the PFs are discontinuous. Hence,
a test problem framework with discontinuous PF is constructed.

Min
�
f1ð x!Þ ¼ f1ðx1; x2;…; xmÞ
f2ð x!Þ ¼ gðxmþ1; xmþ2;…; xNÞ � hðf1; gÞ (3)

where g is a multimodal function, and h is a monotonically nondecreasing
function in g for a fixed value of f1 and a monotonically decreasing
function of f1 for a fixed value of g.

Framework 2 has three advantages. First, the dimension of variable
space is tunable. Second, the distribution (uniform or nonuniform) and
diversity in the PF change with different types of function f1. Third, the
convexity and discontinuity of the PF are affected by function h. How-
ever, the dimension of objective is fixed.

4.3. Framework 3

The objective number of both Framework 1 and Framework 2 is fixed
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to two. Therefore, a framework with a scalable number of objective and
variables is presented.

Min

8>>>>>><
>>>>>>:

f1ð x!Þ ¼ f1ðx1Þ
f2ð x!Þ ¼ f2ðx2Þ
⋮
fM�1ð x!Þ ¼ fM�1ðxM�1Þ
fMð x!Þ ¼ gðxMÞ � hðf1ðx1Þ; f2ðx2Þ; … ;
fM�1ðxM�1Þ; gðxMÞÞ

(4)

where g and h have the same requirement as Framework 2.
The Framework 3 has three advantages. First, the dimension of both

variable and objective space is tunable. Second, the distribution (uniform
or nonuniform) and diversity in the PF changes with different types of
function f1. Third, the convexity or discontinuity of the PF can be
controlled by function h.

Any number of MMO test problems can be generated using these
above three frameworks. In this paper, twelve novel test problems are
designed, which have representative characteristics enabling researchers
to test various aspects of different MMO algorithms. An MMO test
problem suite containing twenty-three test problems is established.
Eleven of them have been used in our previous work [8]. The details,
including problem equations, search space, true global PS/PF and local
PS/PF of these test problems, are in the attached Appendix.

Table 2 lists the characteristics of these MMO test problems. The first
column lists the name of the problems, while the top row shows the
characteristic names. In the table, ‘✓’ represents that the test problem has
the corresponding characteristic, while, ‘⨯’ means it does not. It is
concluded that the MMO test problems have various characteristics. The
novel test problems have more desired characteristics than the previous
ones. There are many real-world problems similar to the proposed test
problems, such as the location selection optimization problem in
Ref. [18], job shop scheduling problem, feature selection problem and
drug molecule design problem in Ref. [33]. Therefore, the test problem
suite can test an algorithm's capacity to tackle a certain aspect of
real-world problems. Some of the real-world problems will be modeled
and included in a future MMO test problem suite.

5. Visualizing the landscape of MMO test problems

The motivations to visualize the landscape of multiobjective test
problems are listed as follows:

1) Checking if the test problems are correctly designed;
2) Showing the properties of test problems intuitively;
3) Promoting the design of algorithms to solve these test problems.

In evolutionary multiobjective optimization, it is very meaningful and
useful to visualize the distribution in both the decision space and
objective space. Prior researchers have proposed several methods for
landscape visualization [34,35]. Fonseca [36] discussed the visualization
of trade-off data from single and multiple runs in multiobjective and
constrained optimization. Tusar et al. [37] presented a review of visu-
alization methods in the objective space. However, they neglected visu-
alization in the decision space. An interesting and excellent way to
visualize the landscapes of MMO problems is proposed in Ref. [38].
However, gradients of some points for the problems MMF2-6 do not exist
and the threshold to determine local efficient set varies for different
problems. Researchers are encouraged to develop a novel visualization
method based on [38] after addressing the above issues.

In this paper, the nondomination rank values are used to visualize the
landscape of multiobjective test problems. The most popular method to
compare two solutions in multiobjective problems is the nondominated
sorting scheme. This scheme ranks all the feasible solutions according to
their nondomination level based on their objective function values. As
shown in Fig. 3, the nondomination rank value of the first front is 1, of the



Table 2
Characteristics of the MMO test problem suite.

MMO test
problem name

C1: Scalable
number of variables

C2: Scalable number
of objectives

C3: Pareto
optima known

C4: PF geometry C5: PS geometry C6: Scalable
number of PS

C7: Coexistence of
global and local PS

SYM-PART
simple

⨯ ⨯ ✓ Convex Linear ⨯ ⨯

SYM-PART
rotated

⨯ ⨯ ✓ Convex Linear ⨯ ⨯

Omni-test ✓ ⨯ ✓ Convex Linear ✓ ⨯

MMF1 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF1_z ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF1_e ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF2 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ✓

MMF3 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ✓

MMF4 ⨯ ⨯ ✓ Concave Nonlinear ⨯ ⨯

MMF5 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF6 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF7 ⨯ ⨯ ✓ Convex Nonlinear ⨯ ⨯

MMF8 ⨯ ⨯ ✓ Concave Nonlinear ⨯ ⨯

MMF9 ⨯ ⨯ ✓ Convex Linear ✓ ⨯

MMF9_r ⨯ ⨯ ✓ Convex Linear, Rotation ✓ ⨯

MMF10 ⨯ ⨯ ✓ Convex Linear ⨯ ✓

MMF11 ⨯ ⨯ ✓ Convex Linear ✓ ✓

MMF12 ⨯ ⨯ ✓ Convex, Discontinuous Linear ✓ ✓

MMF13 ⨯ ⨯ ✓ Convex Nonlinear ✓ ✓

MMF14 ✓ ✓ ✓ Concave Linear ✓ ⨯

MMF14_a ✓ ✓ ✓ Concave Nonlinear ✓ ⨯

MMF15 ✓ ✓ ✓ Concave Linear ✓ ✓

MMF15_a ✓ ✓ ✓ Concave Nonlinear ✓ ✓

Fig. 3. Nondomination rank.
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second front is 2 and so forth. The solutions with lower (better) rank are
preferred.

The procedure of visualizing the landscape of MMO problems are
described as follows.

Step 1: A population is uniformly generated (uniformly-spaced sam-
pling)1 in its feasible space.
Step 2: The population is evaluated using its objective functions.
Step 3: Rank value is assigned to each individual using non-
domination sorting scheme.
Step 4: The landscape is visualized using rank values.

Fig. 4 shows the landscape of the above MMO test problems. With the
help of the visualization method, the size and shape of basins are shown
intuitively. As shown in Fig. 4 (m) and (n), although both MMF10 and
MMF11 have one global and one local PS, their properties are quite
different. The two basins of MMF11 are of similar shape and size, while
MMF10 has one narrow basin and one wide basin. MMF12 has many
1 The term “uniformly generated in its feasible space” means uniformly-
spaced sampling in the decision space. To be specific, if 10,000 points need to
be generated in the two-dimension decision space, the decision space is divided
into a grid of 100 by 100 evenly.
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basins since its PS is composed of discontinuous pieces. In Fig. 4 (p), it is
clear that the PSs of MMF13 are nonlinear. All the characteristics shown
in Fig. 4 are coincident with the description in Section 4 and the Ap-
pendix, which verifies that these MMO test problems are designed
correctly. Note that if the dimension of decision space is higher than two,
it is difficult to visualize the landscape directly. One way to deal with this
issue is by choosing one or two dimensions in which the decisionmaker is
interested. For example, for MM13, the landscape in x2 and x3 is given in
Fig. 4 (p).

The proposed visualization method has several advantages and dis-
advantages. It has three advantages: (i) The gradients of the problems are
not required. (ii) It is easy to implement since the nondomination sorting
scheme is commonly used. (iii) It directly displays the dominance re-
lations in the decision space. The disadvantages are: (i) It can only show
the landscape in two dimensions. (ii) It does not work well on many-
objective problems because most of the solutions are nondominated in
the many-objective situation. Some issues remain for future research,
such as visualizing the landscape using high dimensional visualization
technology, visualizing the search process of evolutionary algorithms,
and developing a general landscape visualization method.

6. Experimental results of different algorithms

In this section, five algorithms, including three MMO algorithms and
two popular multiobjective optimization algorithms NSGAII and SPEA2,
are tested on the proposed test problems.

MO_Ring_PSO_SCD was proposed by Yue et al. [8]. It uses ring to-
pology to restrict the communication among the population aiming to
form stable niches. In this way, different PSs can be detected. In envi-
ronmental selection, MO_Ring_PSO_SCD uses the nondomination level
and special crowding distance to maintain multiple PSs. With the help of
these two operators, MO_Ring_PSO_SCD performs well on MMO
problems.

DN-NSGAII [9] was modified from NSGAII. It embeds a niching
technique in mating selection and environmental selection scheme. Since
crowding distance in decision space is used, DN-NSGAII can obtain good
distribution in the decision space.

Omni-optimizer [14] was proposed by Deb aiming to solve different
types of optimization problems including single objective,



Fig. 4. The landscape of proposed MMO test problems.
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multiobjective, unimodal, and multimodal problems. The main proced-
ure of the Omni-optimizer is similar to that of NSGAII [15]. However, the
environmental selection criterion of the Omni-optimizer is different from
that of NSGAII. In NSGAII, the crowding distance in objective space is
used while crowding distances in both objective space and decision space
are used to select better solutions. This selection scheme enables it to
solve different types of optimization problems.

6.1. Comparisons of the performance indicators of different algorithms

Four performance indicators, Pareto Sets Proximity (PSP) [8],
Inverted Generational Distance (IGD [39]) in decision space (IGDX) [40],
Hypervolume (HV) [41], and IGD in objective space (IGDF) [40] are used
to compare the performance of the five algorithms. Among the indicators,
PSP and IGDX are used to compare the performance in the decision space,
while HV and IGDF are used to compare the performance in the objective
space. As for PSP and HV, the larger value means the better performance,
while for IGDX and IGDF, the smaller means the better. In this paper,
1/PSP and 1/HV are used instead of PSP and HV so that for all the four
indicators the smaller value means the better performance. For fair
comparison, the population size is set to 100*N_var and the maximal
evaluation is set to 5000*N_var, where N_var is the number of variables.
For each problem, 21 independent runs are carried out. The results of
MMF9-15 are displayed in Fig. 5. To provide comprehensive results, the
indicators and statistical test results of the four new test problems are
listed in Table 3. The obtained PSs and PFs of median 1/PSP run are
plotted in Figs. A13–36 of the appendix.

In Fig. 5, each column corresponds to one of the four performance
indicators (in all the boxplots, the smaller value means the better per-
formance), and each row corresponds to one of the seven test problems.
Within each boxplot, the corresponding indicators of the five optimiza-
tion algorithms across the 21 runs are plotted. The numerals on the
horizontal axis of each plot indicate the following algorithms: 1: MO_R-
ing_PSO_SCD, 2: Omni-optimizer, 3: DN-NSGAII, 4: NSGAII, and 5:
SPEA2. It can be concluded that MO_Ring_PSO_SCD performs best on
MMF11-MMF15 according to 1/PSP and IGDX values. As for MMF9-10,
the performances of MO_Ring_PSO_SCD and Omni-optimizer are
comparative. The 1/PSP and IGDX values of DN-NSGAII and Omni-
optimizer are similar to each other on MMF9-MMF15. In conclusion,
MO_Ring_PSO_SCD, Omni-optimizer and DN-NSGAII perform better in
the decision space, because these three algorithms employ the crowding
distance in the decision space for environmental selection. As for 1/HV
and IGDF, NSGAII has the best performance on MMF9. For the other test
problems, the performance in the objective space is not obvious.

In Table 3, the best results (the smallest values) are in bold words. It
can be concluded that MO_Ring_PSO_SCD performs the best on all the
four test problems according to 1/PSP and IGDX and it has a statistically
significant difference with the other algorithms. Therefore, MO_Ring_-
PSO_SCD achieves the best performance in the decision space. The reason
is that ring topology and special crowding distance all help to promote
the performance in the decision space. As for the objective space, NSGAII,
Omni-optimizer and DN-NSGAII perform better than the others accord-
ing to 1/HV because they use the crowding distance in the objective
space as the second environmental selection criterion. However, if
judging from IGDF, MO_Ring_PSO_SCD performs the best on three test
problems, because special crowding distance takes advantage of the
crowding distance in the objective space. For the remaining algorithms,
their performance in the objective space is almost equivalent. In the
decision space, DN-NSGAII performs a little better than the other two
algorithms. The Wilcoxon's rank sum test is employed to determine
whether the best result has a statistically significant difference from the
others, and the null hypothesis is rejected at the significance level of 5%.
The values of h are included in Table 3 where h¼ 1 means there is a
statistically significant difference between the current result and the best
one; while h¼ 0 means there is no statistically significant difference
between them. It can be concluded that MO_Ring_PSO_SCD has a
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statistically significant difference from the others according to 1/PSP and
IGDX. As for 1/HV and IGDF, Omni-optimizer, DN-NSGAII and NSGAII
are similar to each other.

Figs. A13–36 show whether global/local PSs/PFs are found. MMF9
has two global PSs. It tests whether the algorithms can detect and
maintain all the global PSs simultaneously. In Figs. A13, A15 and A16,
MO_Ring_PSO_SCD finds most parts of the two PSs, while SPEA2 only
finds one of the PSs. It may be owing to the strong convergence of SPEA2.
For DN-NSGAII, Omni-optimizer and NSGAII, only parts of the PSs are
found while the others are missing. In Fig. A14, most of the algorithms
lose the PS on the right part, because it is enlarged. In Fig. A17, Omni-
optimizer finds only the local PS since MMF10 has a wide local basin
and a narrow global basin. SPEA2 can find almost the whole global PS,
while DN-NSGAII and NSGAII find parts of global PS and parts of local PS.
For MO_Ring_PSO_SCD only a few nondominated solutions are found. In
fact, the solutions in the local basin are more robust than those in the
global one. Therefore, both of the PSs need to be found for further se-
lection. In Figs. A18–19, none of these algorithms can find local PSs of
MMF11 and MMF12. In Figs. A20–24, the performances of these algo-
rithms deteriorate markedly when the dimensionality of decision space
increases. In Figs. A25–36, if parts of the local/global PSs are missing, the
corresponding parts of the local/global PF are also missing in objective
space.
6.2. Convergence behavior of different algorithms

The convergence behaviors of these algorithms are analyzed on two
typical MMO test problems MMF9 and MMF10. MM9 has np (in this
section, np is set to 2 for convenience's sake) global PSs while MMF10 has
one global PS and one local PS. As shown in Fig. 4 (l)-(m), all the global
PSs of MMF9 are of the same basin size while the local PS of MMF10 has a
larger basin size than its global one. The search space of MMF9 and
MMF10 is divided into two subregions, namely Region 1 {x1 2 ½0:1; 1:1�;
x2 2 ½0:1; 0:6�} and Region 2 {x1 2 ½0:1; 1:1�; x2 2 ð0:6; 1:1�}. There
is one global/local PS in each subregion. The convergence behaviors of
the algorithms are presented by the proportion of individuals in Region 1
for each generation (the proportion of individuals in Region 2 can be also
represented by that of Region 1, because the sum of them is 1). Ideally,
the proportion in Region 1 should converge to 50% if the algorithm
performs well on MMF9. As for MMF10, if the algorithm is trapped in the
local PS, the proportion in Region 2 will be larger than in Region 1 since
the local PS of MMF10 is in Region 2. If the algorithm can maintain only
global Pareto optimal solutions, the proportion in Region 1 will be larger
than in Region 2. If the algorithm can maintain both global and local
Pareto optimal solutions, the proportion in each subregion will converge
to 50%. Therefore, MMF9 can test the algorithm's capacity to maintain
several global PS, while MMF10 can test its preference for global or local
PS. These five algorithms are tested on both MMF9 and MMF10 for 21
independent times. The maximal generation is set to 100 and the other
parameters are the same as in Section 6.1. The mean proportions of 21
runs are shown in Fig. 6.

Fig. 6 shows the convergence behaviors of different algorithms. The
continuous line represents the ideal proportion in Region 1 which is
equal to 0.5, and the dotted lines of different types represent the pro-
portion in Region 1 of different algorithms. Fig. 6 (a) shows that the
proportion in Region 1 is approaching 50% for MO_Ring_PSO_SCD,
Omni-optimizer, DN-NSGAII, and NSGAII. For SPEA2, the proportion in
Region 1 is smaller than 0.5, which indicates that most individuals of
SPEA2 converge to Region 2. Fig. 6 (b) shows that the proportions in
Region 1 are much larger than 0.5 for Omni-optimizer, DN-NSGAII,
NSGAII and SPEA2. The reason is that the global PS is located in Region
1. It can be concluded that the four algorithms converge to the global PS
but miss the local one. Only MO_Ring_PSO_SCD maintains almost equal
proportions in the two regions. In many real-world problems, the global
PS is so difficult to realize that the local PS is desired actually [33].



Fig. 5. The indicators of different algorithms on seven test problems. The numerals on the horizontal axis of each plot indicate the following algorithms: 1:
MO_Ring_PSO_SCD, 2: Omni-optimizer, 3: DN-NSGAII, 4: NSGAII, and 5: SPEA2.
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Table 3
The comparison results of different algorithms (mean� std (h)).

Function Indicator (Ideal valuea) MO_Ring_PSO_SCD DN-NSGAII Omni-optimizer NSGAII SPEA2

MMF1_z 1/PSP (0) 0.0354± 0.0016 0.0760� 0.0137 (1) 0.0798� 0.0174 (1) 0.1717� 0.0922 (1) 0.5142� 0.4180 (1)
1/HV (1.1443) 1.1485� 5.5037e-04 (1) 1.1484� 0.011 (1) 1.1473� 0.0013 (0) 1.1470± 0.0013 1.2241� 0.0644 (1)
IGDX (0) 0.0352± 0.0016 0.0748� 0.0134 (1) 0.0777� 0.0162 (1) 0.1593� 0.0607 (1) 0.3363� 0.1469 (1)
IGDF (0) 0.0036� 1.6489e-04 (1) 0.0035� 3.3205e-04 (1) 0.0032� 4.0659e-04 (1) 0.0030± 4.2398 e-04 0.0525� 0.0550 (1)

MMF1_e 1/PSP (0) 0.5677± 0.1331 1.7492� 0.9283 (1) 1.9950� 1.3681 (1) 2.3813� 2.1201 (1) 11.3950� 8.3396 (1)
1/HV (1.1443) 1.1998� 0.0354 (1) 1.4169� 0.4493 (1) 1.1834� 0.0306 (0) 1.1691± 0.0131 1.1935� 0.0272 (1)
IGDX (0) 0.4905± 0.0866 1.1981� 0.4644 (1) 1.2674� 0.5601 (1) 1.3481� 0.6216 (1) 2.7373� 0.8399 (1)
IGDF (0) 0.0126± 0.0019 0.0248� 0.0189 (0) 0.0241� 0.0217 (0) 0.0149� 0.0090 (0) 0.0318� 0.0178 (1)

MMF9_r 1/PSP (0) 0.0067± 4.1000e-04 0.0134� 0.0137 (1) 0.0106� 0.0074 (1) 0.0262� 0.0102 (1) 0.0212� 0.0218 (1)
1/HV (1.7910) 0.5449� 2.2818e-04 (1) 0.5469� 0.0035 (1) 0.5437� 4.1459e-05 (1) 0.5437± 2.9658e-05 0.5440� 1.8799e-04 (1)
IGDX (0) 0.0067± 3.9580e-04 0.0127� 0.0123 (1) 0.0100� 0.0064 (1) 0.0242� 0.0083 (1) 0.0194� 0.0173 (1)
IGDF (0) 0.0032� 1.5763e-04 (1) 0.0023� 9.2090e-05 (1) 0.0021± 9.2519e-05 0.0022� 1.0084e-04 (0) 0.0027� 1.8059e-04 (1)

MMF14_a 1/PSP (0) 0.0599± 0.0018 0.1188� 0.0.0077 (1) 0.1102� 0.0078 (1) 0.1318� 0.0106 (1) 0.2749� 0.1387 (1)
1/HV (0.2458) 0.3314� 0.0264 (0) 0.3235± 0.0163 0.3275� 0.0094 (0) 0.3492� 0.0056 (1) 0.3976� 0.0507 (1)
IGDX (0) 0.0598± 0.0018 0.1188� 0.0077 (1) 0.1102� 0.0078 (1) 0.1315� 0.0106 (1) 0.2270� 0.0686 (1)
IGDF (0) 0.0783± 0.0020 0.1199� 0.0072 (1) 0.1044� 0.0046 (1) 0.1192� 0.0074 (1) 0.2160� 0.0268 (1)

MMF15_a 1/PSP (0) 0.1643± 0.0106 0.2178� 0.0312 (1) 0.2608� 0.0320 (1) 0.2686� 0.0326 (1) 0.2663� 0.0351 (1)
1/HV (0.1881) 0.2396� 0.0112 (1) 0.2319� 0.0127 (0) 0.2289± 0.0055 0.2352� 0.0050 (1) 0.2732� 0.0318 (1)
IGDX (0) 0.1620± 0.0098 0.2092� 0.0169 (1) 0.2210� 0.0138 (1) 0.2321� 0.0084 (1) 0.2347� 0.0136 (1)
IGDF (0) 0.1741± 0.0027 0.2207� 0.0087 (1) 0.2077� 0.0075 (1) 0.2145� 0.0093 (1) 0.2908� 0.0235 (1)

a Ideal value is the indicator value of the reference solution set. The reference data are available on http://www5.zzu.edu.cn/ecilab/Benchmark/Multimodal_Opt.h
tm.

Fig. 6. The convergence behaviors of different algorithms.
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Therefore, algorithms that can find both global and local PS need to be
proposed in the future. In addition, how to choose one local PS if a
problem possesses multiple local PSs and how to choose one solution in
local or global PS are also challenges in MMO.

7. Conclusions

A novel multimodal multiobjective optimization (MMO) test problem
suite is proposed in this paper. First, three different frameworks are
presented to guide the design of MMO test problems. Based on these
frameworks, twelve novel MMO test problems with different character-
istics are generated. They can be used to test various aspects of MMO
algorithms. Furthermore, a landscape visualization method of a multi-
objective optimization problem is provided to check whether the test
problems are designed correctly and to show the property of multi-
objective problems intuitively. Finally, both MMO algorithms and pop-
ular multiobjective optimization algorithms are tested on these
problems. From the experimental results and convergence behaviors
analysis, it can be concluded that traditional multiobjective optimization
algorithms can only maintain parts of PSs while MMO algorithm can find
more Pareto optimal solutions. Although, the tested MMO algorithms can
obtain most parts of the global PSs, they all fail to find local PSs.
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The multimodal multiobjective optimization is a relatively new
research direction in the optimization area. Thus, many studies need to
be conducted, such as: (1) designing more general MMO test problems,
including high-dimensional many-objective MMO test problems with
various shapes of PF and PS, (2) developing novel mechanisms to aid the
MMO algorithms in finding local and global PSs efficiently, (3) designing
algorithms to deal with MMO problems with linkages among variables/
objectives, (4) selecting final solutions to MMO problems, (5) visualizing
the landscape using high dimensional visualization technology, and (6)
visualizing the search process of evolutionary algorithms.
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APPENDIX  

I. Previous MMO test problems 

There are eleven MMO test problems in our previous work. The details of them are listed as follows. 
 

SYM-PART simple 

 
2 2

1 1 2

2 2
2 1 2

( )

( )

f p a p

f p a p

   


  
  (A1) 

where 

1 1 1

2 2 2

( 2 )p x t c a

p x t b

  
    

 ˆ ˆsgn( ) min | |,1i i it t t   

1

1 1

2

2 2

( )
2ˆ sgn( )

2

2ˆ sgn( )

c
x a

t x
a c

b
x

t x
b

     
     

  


       
 
 

 

Its search space is 
[ 20, 20]ix   . 

Its global PSs are 

1

2

[ , ]

0

p a a

p

 
 

 

Its global PFs are 
2 2

1

2 2
2

4

4 (1 )

f a v

f a v

 


 
 

where [0,1]v . 

SYM-PART rotated 

 
2 2

1 1 2

2 2
2 1 2

( )

( )

f p a p

f p a p

   


  
  (A2) 

where 

1 1 1

2 2 2

( 2 )p x t c a

p x t b

  
    

 ˆ ˆsgn( ) min | |,1i i it t t   

1

1 1

2

2 2

( )
2ˆ sgn( )

2

2ˆ sgn( )

c
r a

t r
a c

b
r

t r
b

     
     

  


       
 
 

 

1 1 2

2 1 2

(cos ) (sin )

(sin ) (cos )

r x x

r x x

 
 

   
    

 

Its search space is 
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[ 20, 20]ix   . 

Its global PSs are 

1

2

[ , ]

0

p a a

p

 
 

 

Its global PFs are 
2 2

1

2 2
2

4

4 (1 )

f a v

f a v

 


 
 

where [0,1]v . 

Omni-test 

 
1 1

2 1

sin( )

cos( )

n

ii

n

ii

f x

f x








 







  (A3) 

Its search space is 
[0,6]ix  . 

Its global PSs are 
[2 1, 2 3 / 2]ix m m    

where 1 0n f   . 

Its global PFs are 
2 2

2 1f n f    

where 1 0n f   . 

MMF1 

 
1 1

2
2 1 2 1

2

1 2 2( sin(6 2 ))

f x

f x x x 

  


      
  (A4) 

Its search space is 

1 [1, 3]x  , 2 [ 1,1]x   . 

Its global PSs are 

1 1

2 1sin(6 2 )

x x

x x 


   
 

where 11 3x  . 

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF2 

 

1 1

2
1 2 1

2 1
2

2

2
1 2 1

2 1
2

1 2(4( )

20( )
2cos( ) 2), 0 1

2

1 2(4( 1 )

20( 1 )
cos( ) 2),1 2

2

f x

x x x

x x
x

f

x x x

x x
x








   

        
    
      
 

  (A5) 

Its search space is 

1 [0, 1]x  , 2 [0, 2]x  . 

Its global PSs are 
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2 2

2
2 2

1 2
2 2

0 1

( 1) 1 2

x x

x x
x

x x




       

  

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF3 

 

1 1

2
1 2 1

2 1

2 2 1

2

2
1 2 1

2 1

2 1 2

1 2(4( )

20( )
2cos( ) 2)

2
0 0.5 0.5 1& 0.25 1

1 2(4( 0.5 )

20( 0.5 )
cos( ) 2)

2
1 1.5,0 0.25 & 0.5 1

f x

x x x

x x

x x x

f

x x x

x x

x x x








    

  

      
  
    
    

      

，
  (A6) 

Its search space is 

1 [0, 1]x  , 2 [0, 1.5]x  . 

Its global PSs are 

2 2

2
2 2 2 1

1 2
2 2 1 2

0 0.5 0.5 1& 0.25 1

( 0.5) 1 1.5,0 0.25 & 0.5 1

x x

x x x x
x

x x x x




               

，   

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF4 

 

1 1

2 2
1 2 1 2

2 2 2
1 2 1 2

1 2( sin( )) 0 1

1 2( 1 sin( )) 1 2

f x

x x x x
f

x x x x





 
               

  (A7) 

Its search space is 

1 [ 1, 1]x   , 2 [0, 2]x  . 

Its global PSs are 

1 1

1 2

2

1 2

sin( ) 0 1

sin( ) 1 1 2

x x

x x
x

x x








       

  

Its global PFs are 
2

2 11f f   

where 10 1f  . 

MMF5 

 

1 1

2
1 2 1

2 2
1 2 1 2

2

2

1 2 2( sin(6 2 )) 1 1

1 2 2( 2 sin(6 2 )) 1 3

f x

x x x x
f

x x x x

 

 

 
            

         

  (A8) 
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Its search space is 

1 [ 1, 3]x   , 2 [1, 3]x  . 

Its global PSs are 

1 2
2

1 2

sin(6 | 2 | ) 1 1

sin(6 | 2 | ) 2 1 3

x x
x

x x

 
 

    
      

  

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF6 

 

1 1

2
1 2 1

2 2
1 2 1 2

2

2

1 2 2( sin(6 2 )) 1 1

1 2 2( 1 sin(6 2 )) 1 3

f x

x x x x
f

x x x x

 

 

 
            

         

  (A9) 

Its search space is 

1 [ 1, 3]x   , 2 [1, 2]x  . 

Its global PSs are 

1 2
2

1 2

sin(6 | 2 | ) 1 1

sin(6 | 2 | ) 1 1 2

x x
x

x x

 
 

    
      

  

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF7 

 


1 1

2

2 1 2 1 1

2

1 1

2

1 2 [0.3 2 cos(24 2

4 ) 0.6 2 ] sin(6 2 )

f x

f x x x x

x x



  

  

        

      

  (A10) 

Its search space is 

1 [1, 3]x  , 2 [ 1,1]x   . 

Its global PSs are 
2

2 1 1 1 1[0.3 2 cos(24 2 4 ) 0.6 2 ] sin(6 2 )x x x x x              

where 11 3x  .  

Its global PFs are 

2 11f f   

where 10 1f  . 

MMF8 

 

1 1

2 2
1 2 1 1 2

2
2 2

1 2 1 1 2

sin

1 (sin ) 2( sin ) 0 4

1 (sin ) 2( 4 sin ) 4 9

f x

x x x x x
f

x x x x x


         

       

  (A11) 

Its search space is 

1 [ , ]x    , 2 [0, 9]x  . 

Its global PSs are 

1 1 2

2

1 1 2

sin 0 4

sin 4 4 9

x x x
x

x x x

    
   

  

where 1x    .  

Its global PFs are 
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2 11f f   

where 10 1f  . 

II. Novel MMO test problems 

MMF1_z 

1 1

2
1 2 1 1

2
2

1 2 1 1

2

1 2 2( sin(2 2 )) , [1, 2)Min

1 2 2( sin(2 2 )) , [2, 3]

f x

x x k x x
f

x x x x

 

 

  
          

       

  (A12) 

where k > 0 (k controls the deformation degree of the global PS in 1 [1, 2)x  ).  

Its search space is 

1 [1, 3]x  , 2 [ 1, 1]x   . 

Its global PSs are 
 

1 1

2

1 1

sin(2 2 ), [1, 2)

sin(2 2 ), [2, 3]

k x x
x

x x

 

 

    
  

 

where k > 0. 
Its global PF is  

2 1 11 , [0, 1]f f f     (A13) 

When 3k  , its true PSs and PF are shown in Fig. A1. 
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(a) True PSs of MMF1_z                                                       (b)True PFs of MMF1_z 

Fig. A1. The true PSs and PF of MMF1_z. 

MMF1_e 

1

1 1

2
1 2 1 1

2
2

1 2 1 1

2

1 2 2( sin(6 2 )) , [1, 2)Min

1 2 2( sin(6 2 )) , [2, 3]x

f x

x x x x
f

x x a x x

 

 

  
          

       

  (A14) 

where 0 & 1a a  (a controls the amplitude of the global PS in 1 [2, 3]x  ). 

Its search space is 

1 [1, 3]x  , 3 3
2 [ , ]x a a  . 

Its global PSs are 
 

1

1 1

2

1 1

sin(6 2 ), [1, 2)

sin(2 2 ), [2, 3]x

x x
x

a x x

 

 

    
  

 

where 0 & 1a a  . 
Its global PF is  

2 1 11 , [0,1]f f f     (A15) 

When a e , its true PSs and PF are shown in Fig. A2. 
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(a) True PSs of MMF1_e                                                       (b)True PFs of MMF1_e 

Fig. A2. The true PSs and PF of MMF1_e. 

 
MMF9 

1 1

2
2

1

Min ( )

f x

g x
f

x



 


  (A16) 

where  6( ) 2 sin pg x n x  , pn  is the number of global PSs.  

Its search space is 

1 [0.1, 1.1]x  , 2 [0.1, 1.1]x  . 

Its ith global PS is 

2 1

1 1
( 1), [0.1,1.1]

2 p p

x i x
n n

      

where 1,2, , pi n  .  

Its ith global PF is 

2 1
1

1

2
, [0.1,1.1]

p

g
n

f f
f

 
  
    

When 2pn  , its true PSs and PF are shown in Fig. A3. 
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(a) True PSs of MMF9                                                       (b)True PFs of MMF9 
Fig. A3. The true PSs and PFs of MMF9. 

MMF9_r 

1 1

2
2

1

Min ( )
r

r

r

f x A

g x
f A

x

 

  


 (A17) 

where  6
2 2( ) 2 sinr p rg x n x  , pn  is the number of global PSs. rx xM , where M is a rotation matrix. 

         2 2

1 1

10 1 10 1
n n

ri li ri li ri li ri ui
i i

A x x x x x x x x
 

              where n is the number of variables, xl is the low bound 
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of x and xu is the up bound. The A  is an additional items to worsen the function values of points outside the original bound after 
rotation. 
Its search space is 

[ 0.5, 0.5]x  . 

Its ith global PS is 

2 1

1 1
2 ( 1) 0.5

2 p p

x x i
n n

 
       

 
 

where 1,2, , pi n  .  

Its global PF is calculated by its PS and objective functions. 
When 2pn  , its true PSs and PF are shown in Fig. A4. 
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(a) True PSs of MMF9_r                                                       (b)True PFs of MMF9_r 

Fig. A4. The true PSs and PFs of MMF9_r. 

MMF10 

 
1 1

2
2

1

Min ( )

f x

g x
f

x



 


  (A18) 

where 
2 2

0.2 0.6
( ) 2 exp 0.8exp

0.004 0.4

x x
g x

                 
         

.  

Its search space is 

1 [0.1, 1.1]x  , 2 [0.1, 1.1]x  .  

Its global PS is 

2 10.2, [0.1,1.1]x x  . 

Its local PS is  

2 10.6, [0.1,1.1]x x  . 

Its global PF is  

2

(0.2)

1

g
f

f
 , 1 [0.1, 1.1]f  . 

Its local PF is  

2

(0.6)

1

g
f

f
 , 1 [0.1, 1.1]f  . 

Its true PSs and PFs are shown in Fig. A5. 
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(a) True PSs of MMF10                                                        (b) True PFs of MMF10 
Fig. A5. The true PSs and PFs of MMF10. 

MMF11 

 
1 1

2
2

1

Min ( )

f x

g x
f

x



 


  (A19) 

where    
2

60.1
( ) 2 exp 2log 2 sin

0.8 p

x
g x n x

        
   

, pn  is the total number of global and local PSs.  

Its search space is 

1 [0.1, 1.1]x  , 2 [0.1, 1.1]x  . 

Its global PS is  

2 1

1
, [0.1,1.1]

2 p

x x
n

  . 

Its ith local PS is 

2 1

1 1
( 1), [0.1,1.1]

2 p p

x i x
n n

      

where 2, 3, , pi n  . 

Its global PF is 

2 1
1

1

2
, [0.1,1.1]

p

g
n

f f
f

 
  
   . 

Its local PF is 

2 1
1

1 1
( 1)

2
, [0.1,1.1]

p p

g i
n n

f f
f

 
    

    

where 2, 3, , pi n  . 

When 2pn  , its true PSs and PFs are shown in Fig. A6. 
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(a) True PSs of MMF11                                                    (b) True PFs of MMF11 

Fig. A6. The true PSs and PFs of MMF11. 
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MMF12 

 1 1

2 2 1

Min
( ) ( , )

f x

f g x h f g


  

  (A20) 

where    
2

60.1
( ) 2 exp 2log 2 sin

0.8 p

x
g x n x

        
   

, pn  is the total number of global and local PSs,
 

2

1 1
1 1( , ) 1 sin(2 )

f f
h f g qf

g g


 
   

 
, q  is the number of discontinuous pieces in each PF (PS). 

Its search space is 

1 [0, 1]x  , 2 [0, 1]x  . 

Its global PS is discontinuous pieces in  

2

1

2 p

x
n

 . 

Its ith local PSs are discontinuous pieces in  

2

1 1
( 1)

2 p p

x i
n n

     

where 2, 3, , pi n  . 

Its global PF is discontinuous pieces in 
* *

2 1( , )f g h f g   

where *g  is the global optimum of ( )g x . 

Its local PFs are discontinuous pieces in 
* *

2 1( , )l lf g h f g   

where *
lg  are the local optima of ( )g x . 

The ranges of discontinuous pieces depend on the minima of * *
2 1( , )f g h f g  . 

When 2pn  , its true PSs and PFs are shown in Fig. A7. 
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     (a) True PSs of MMF12                                            (b) True PFs of MMF12 
Fig. A7. The true PSs and PFs of MMF12. 

MMF13 

 
1 1

2
1

min ( )

f x

g t
f

x



 

  (A21) 

where     
2

60.1
( ) 2 exp 2log 2 sin

0.8 p

t
g t n t

        
   

, 

2 3t x x  , pn  is the total number of global and local PSs. 

Its search space is  

1 2 3[0.1,1.1], [0.1,1.1], [0.1,1.1].x x x    

Its global PS is 
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2 3 1

1
, [0.1,1.1]

2 p

x x x
n

   . 

Its ith local PSs is 

2 3 1

1 1
, [0.1,1.1]

2 p p

i
x x x

n n


    . 

where 2, 3, , pi n  . 

Its global PF is  

 

2

6

2
1

1
0.1

2 1
2 exp 2log 2 sin

0.8 2
p

p
p

n
n

n

f
f



                         
     

Its local PFs are 

 

2

6

2
1

1 1
0.1

2 1 1
2 exp 2log 2 sin

0.8 2
p p

p
p p

i

n n i
n

n n

f
f



                                 
  

     

where 2, 3, , pi n  . 

When 2pn  , its true PSs and PFs are shown in Fig. A8. 
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     (a) True PSs of MMF13                                             (b) True PFs of MMF13 

Fig. A8. The true PSs and PFs of MMF13. 

MMF14 

 

 
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3 1 2 2 1 1

1

cos( ) cos( ) cos( ) cos( ) 1 ( , , , )2 2 2 2

cos( ) cos( ) cos( )sin( ) 1 ( , , , )2 2 2 2

cos( )cos( ) sin( ) 1 ( , , , )2 2 2Min

cos( 2

   

   

  



    

    

   



 

 
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
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
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m

f x x x x g x x x

f x x x x g x x x

f x x x g x x x

f x  

 
1 2 1 1

1 1 1

)sin( ) 1 ( , , , )2

sin( ) 1 ( , , , )2




  

  














 





m m m k

m m m m k

x g x x x

f x g x x x

                  (A22) 

where   1

2
1 1( , , , ) 2 sin

m km m m k pg x x x n x
      , pn  is the number of global PSs. 

Its search space is 
[0,1], for 1, 2, ,ix i n   , 

where n  is the dimension of decision space; m is the dimension of objective space; ( 1)k n m   . 
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Its ith (i = 1, 2,…, np) global PSs are 
1 1

( 1), [0,1] for 1: 1
2n j

p p

x i x j n
n n

       . 

Its global PFs are 

 2 2

1

(1 *)
M

j
j

f g


   

where *g  are the global optima of ( )g x . 

When 2, 2, 3pn m n   , its true PSs and PFs are shown in Fig. A9. 

 
(a) True PSs of MMF14                                                                      (b) True PFs of MMF14 

Fig. A9. The true PSs and PFs of MMF14. 

 
 
 
MMF14_a 

 

 
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1
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)sin( ) 1 ( , , , )2

sin( ) 1 ( , , , )2

m m m k
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


  

  




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
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
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
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      (A23) 

where  
1 2

2
1 1

1
( , , , ) 2 sin 0.5sin

2m k m km m m k p
p

g x x x n x x
n

 
     

  
         

 , pn  is the number of global PSs. 

Its search space is 
[0, 1], for 1, 2, ,ix i n    

where n  is the dimension of decision space; m is the dimension of objective space; ( 1)k n m   . 

Its ith (i = 1, 2,…, np) global PSs are 

 
1

1
0.5sin ( 1), [0,1] for 1: 1

nn j
p

x x i x j n
n




       . 

Its global PFs are 

 2 2

1

(1 *)
M

j
j

f g


   

where *g  are the global optima of ( )g x . 

When 2, 2, 3pn m n   , its true PSs and PFs are shown in Fig. A10. 
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(a) True PSs of MMF14_a                                                     (b) True PFs of MMF14_a 

Fig. A10. The true PSs and PFs of MMF14_a. 
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                 (A24) 

where    
2

21
1 1 1

0.1
( , , , ) 2 exp 2log 2 sin

0.8
m k

m m m k p m k

x
g x x x n x 

    

        
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 , pn  is the number of global PSs. 

Its search space is 
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where n  is the dimension of decision space; m is the dimension of objective space; ( 1)k n m   . 
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
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where *
lg  are the local optima of ( )g x . 

When 2, 2, 3pn m n   , its true PSs and PFs are shown in Fig. A11. 
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(a) True PSs of MMF15                                                           (b) True PFs of MMF15 

Fig. A11. The true PSs and PFs of MMF15. 
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where    
2

2
1 1

0.1
( , , , ) 2 exp 2log 2 sin

0.8m m m k p

t
g x x x n t  

        
   

 ,  
1 2

1
0.5sin

2m k m k

p

t x x
n


   

   ,
 pn is the number of 

global PSs. 
Its search space is 

[0,1], for 1, 2, ,ix i n    
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Its global PS is 
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where *
lg  are the local optima of ( )g x . 

When 2, 2, 3pn m n   , its true PSs and PFs are shown in Fig. A12. 
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(a) True PSs of MMF15_a                                                      (b) True PFs of MMF15_a 

Fig. A12. The true PSs and PFs of MMF15_a. 

III. The PSs obtained by different algorithms 

True PS

Obtained PS
 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A13. The comparison of PSs obtained by different algorithms on MMF1_z. 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A14. The comparison of PSs obtained by different algorithms on MMF1_e. 

         
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A15. The comparison of PSs obtained by different algorithms on MMF9. 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A16. The comparison of PSs obtained by different algorithms on MMF9_r. 

          
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A17. The comparison of PSs obtained by different algorithms on MMF10. 
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(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A18. The comparison of PSs obtained by different algorithms on MMF11. 

              
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A19. The comparison of PSs obtained by different algorithms on MMF12. 

 
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          

 
    (c) Omni-optimizer                                                                                                    (d) NSGAII 
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                                      (e) SPEA2 

Fig. A20. The comparison of PSs obtained by different algorithms on MMF13. 

 
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          

 
    (c) Omni-optimizer                                                                                                    (d) NSGAII 
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                                      (e) SPEA2 

Fig. A21. The comparison of PSs obtained by different algorithms on MMF14. 

 
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          

 
    (c) Omni-optimizer                                                                                                    (d) NSGAII 
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                                      (e) SPEA2 

Fig. A22. The comparison of PSs obtained by different algorithms on MMF14_a. 

 
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          

 
    (c) Omni-optimizer                                                                                                    (d) NSGAII 
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                                      (e) SPEA2 

Fig. A23. The comparison of PSs obtained by different algorithms on MMF15. 

 
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          

 
    (c) Omni-optimizer                                                                                                    (d) NSGAII 
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                                      (e) SPEA2 

Fig. A24. The comparison of PSs obtained by different algorithms on MMF15_a. 

IV. The PFs obtained by different algorithms  

True PF

Obtained PF
 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A25. The comparison of PFs obtained by different algorithms on MMF1_z. 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A26. The comparison of PFs obtained by different algorithms on MMF1_e. 

                    
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A27. The comparison of PFs obtained by different algorithms on MMF9. 

 
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A28. The comparison of PFs obtained by different algorithms on MMF9_r. 
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(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A29. The comparison of PFs obtained by different algorithms on MMF10. 

                    
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A30. The comparison of PFs obtained by different algorithms on MMF11. 

                    
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A31. The comparison of PFs obtained by different algorithms on MMF12. 

                    
(a) MO_Ring_PSO_SCD                  (b) DN-NSGAII                      (c) Omni-optimizer                       (d) NSGAII                                  (e) SPEA2 

Fig. A32. The comparison of PFs obtained by different algorithms on MMF13. 

          
(a) MO_Ring_PSO_SCD                                                                                           (b) DN-NSGAII                                                          
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    (c) Omni-optimizer                                                                                                    (d) NSGAII 

 

 
                                      (e) SPEA2 

Fig. A33. The comparison of PFs obtained by different algorithms on MMF14. 
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    (c) Omni-optimizer                                                                                                    (d) NSGAII 

 

 
                                      (e) SPEA2 

Fig. A34. The comparison of PFs obtained by different algorithms on MMF14_a. 
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    (c) Omni-optimizer                                                                                                    (d) NSGAII 

 

 
                                      (e) SPEA2 

Fig. A35. The comparison of PFs obtained by different algorithms on MMF15. 
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    (c) Omni-optimizer                                                                                                    (d) NSGAII 

 

 
                                      (e) SPEA2 

Fig. A36. The comparison of PFs obtained by different algorithms on MMF15_a. 

 
 

 

0

1

2

3 0 0.5 1
1.5 2 2.5 3

0

1

2

3

f
2

f
1

f3

0

1

2

3 0 0.5 1
1.5 2 2.5 3

0

1

2

3

f
2

f
1

f3

0

1

2

3 0 0.5 1
1.5 2 2.5 3

0

1

2

3

f
2

f
1

f3


	A novel scalable test problem suite for multimodal multiobjective optimization.pdf
	A novel scalable test problem suite for multimodal multiobjective optimization
	1. Introduction
	2. Related definitions
	3. Design approaches and desired characteristics of MMO test problems
	3.1. Design approach
	3.1.1. Generating MMO test problems from unimodal multiobjective problems
	3.1.2. Generating MMO test problems from multimodal single objective problems

	3.2. Desired characteristics of MMO test problems

	4. MMO test problem generation frameworks
	4.1. Framework 1
	4.2. Framework 2
	4.3. Framework 3

	5. Visualizing the landscape of MMO test problems
	6. Experimental results of different algorithms
	6.1. Comparisons of the performance indicators of different algorithms
	6.2. Convergence behavior of different algorithms

	7. Conclusions
	Acknowledgement
	Appendix A. Supplementary data
	References


	Appendix_supplement

