郑州大学计算智能实验室

Computational Intelligence Laboratory

毕莹


undefined

         毕莹,博士

         学科特聘教授,博士生导师

         E-mail:yingbi@zzu.edu.cn



毕莹,博士,学科特聘教授,国家级青年人才计划入选者。博士毕业于新西兰惠灵顿维多利亚大学,师从Mengjie Zhang 教授(新西兰皇家科学院院士、新西兰工程院院士、IEEE Fellow)和Bing Xue 教授(新西兰工程院院士、惠灵顿维多利亚大学工程与计算机学院副院长)。长期从事遗传规划、进化计算、机器学习、计算机视觉等领域的理论与应用研究 ,出版了全球首部基于遗传规划的图像分类英文专著,在国际学术刊物和会议上发表学术论文55篇,其中SCI期刊文章25篇,以第一或通讯作者发表中科院一区TOP期刊论文16篇,15篇发表在IEEE系列期刊上。在全球遗传规划算法网站(The GP Bibliography)上排名第93位(>16000名研究人员)。担任SCI一区期刊《Applied Soft Computing》、《Memetic Computing》的客座编辑,连续两年在IEEE国际数据挖掘会议上(IEEE ICDM 2021、2022)组织了进化数据挖掘和机器学习研讨会,担任IEEE计算智能协会(CIS)进化计算机视觉和图像处理专题研讨会副主席,IEEE CIS进化特征选择和构建专题研讨会成员之一,在国际进化计算著名会议如IEEE CEC、IEEE SSCI上组织多次相关专题会议,长期担任20多个领域重要期刊审稿人和20多次国际著名学术会议程序委员会成员。担任IEEE计算智能女性委员会成员,担任2024年进化计算国际会议(IEEE CEC)研讨会主席,担任2023年遗传与进化计算会议(GECCO)学生事务副主席,参与组织两个国际学术会议IEEE CEC 2019和Australasian AI 2018。

出版专著:

l Y. Bi(毕莹), B. Xue, and M. Zhang. Genetic Programming for Image Classification: An Automated Approach to Feature  Learning, Springer International Publishing 2021, DOI: https:doi.org10.1007978-3-030-65927-1. (全球首部基于遗传规划的图像分类英文专著)

主要发表论文:

[1] Y. Bi毕莹, B. Xue, and M. Zhang. “Dual-Tree Genetic Programming for Few-Shot Image Classification,”IEEE Transactions on Evolutionary Computation, vol.26, no.3, pp.555–569, 2022. (IF=16.497 )

[2] Y. Bi(毕莹), B. Xue, and M. Zhang. “Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification,” IEEE Transactions on Evolutionary Computation, early access, DOI: 10.1109/TEVC.2022.3214503, 2022. (IF=16.497 )

[3] Y. Bi(毕莹), B. Xue, and M. Zhang. “Learning and Sharing: A Multi-Task Genetic Programming Approach to Image Feature Learning,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 2, pp. 218-232, 2022. (IF =16.497 )

[4] Y. Bi(毕莹), B. Xue, and M. Zhang. “Genetic Programming with Image-Related Operators and A Flexible Program Structure for Feature Learning in Image Classification,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 87-101, 2021. (IF=16.497 )

[5] Y. Bi(毕莹), B. Xue, and M. Zhang. “A Divide-and-Conquer Genetic Programming Algorithm with Ensembles for Image Classification,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 6, pp. 1148-1162, 2021. (IF=16.497 )

[6] Y. Bi(毕莹), B. Xue, and M.Zhang. “Multitask Feature Learning as Multiobjective Optimization: A New Genetic Programming Approach to Image Classification,” IEEE Transactions on Cybernetics, early access, DOI: 10.1109/TCYB.2022.3174519, 2022. (IF=19.118 )

[7] Y. Bi(毕莹), B. Xue, P. Mesejo, S. Cagnoni, M. Zhang. “A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends,” IEEE Transactions on Evolutionary Computation, vol. 27, no. 1, pp. 5-25, 2022. (IF=16.497)

[8] Q. Fan, Y. Bi(毕莹)*, B. Xue, and M. Zhang. “A Global and Local Surrogate-Assisted Genetic Programming Approach to Image Classification,” IEEE Transactions on Evolutionary Computation, early access, DOI: 10.1109/TEVC.2022.3214607, 2022. (IF=16.497 ) (通讯作者)

[9] Q. Fan, Y. Bi(毕莹)*, B. Xue, M. Zhang. “Genetic Programming for Image Classification: A New Program Representation with Flexible Feature Reuse. IEEE Transactions on Evolutionary Computation, early access, DOI: 10.1109/TEVC .2022.3169490, 2022. (IF=16.497 ) (通讯作者)

[10] Y. Bi(毕莹), B. Xue, and M. Zhang. “Instance Selection Based Surrogate-Assisted Genetic Programming for Feature Learning in Image Classification,” IEEE Transactions on Cybernetics, vol. 53, no. 2, pp. 1118-1132, 2023. (IF=19.118 )

[11] Y. Bi(毕莹), B. Xue, and M. Zhang. “Genetic Programming-Based Discriminative Feature Learning for Low-Quality Image Classification,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8272 - 8285, 2022. (IF=19.118 )

[12] Y. Bi(毕莹), B. Xue, and M. Zhang. “Genetic Programming with A New Representation to Automatically Learn Features and Evolve Ensembles for Image Classification,” IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 1769 - 1783, 2020. (IF=19.118 )

[13] B. Peng, S. Wan, Y. Bi*(毕莹), B. Xue, and M. Zhang. “Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis,” IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4909-4923, 2021. (IF=19.118 )(通讯作者)

[14] Y. Bi(毕莹, B. Xue, and M. Zhang. “An Effective Feature Learning Approach Using Genetic Programming with Image Descriptors for Image Classification,” IEEE Computational Intelligence Magazine, vol. 15, no. 2, pp. 65-77, 2020. (IF=9.809 )

[15] Y. Bi(毕莹), B. Xue, M. Zhang. “Using a Small Number of Training Instances in Genetic Programming for Face Image Classification,” Information Sciences, vol. 593, pp. 488-504, 2022. (IF=8.233 )

[16] B. Peng, Y. Bi(毕莹)*, B. Xue, M. Zhang, and S. Wan. “Multi-View Feature Construction Using Genetic Programming for Rolling Bearing Fault Diagnosis,” IEEE Computational Intelligence Magazine, vol. 16, no. 3, pp. 79-94, 2021. (IF=9.809 ) (通讯作者)

[17] Y. Bi(毕莹), B. Xue, M. Zhang. “Multi-Objective Genetic Programming for Feature Learning in Face Recognition,” Applied Soft Computing, vol. 103, Doi: https://doi.org/10.1016/j.asoc.2021.107152, 2021.( IF=8.263)

[18] Y. Bi(毕莹), B. Xue, D. Briscoe, R. Vennell, M. Zhang. “A New Artificial Intelligent Approach to Buoy Detection for Mussel Farming,” Journal of Royal Society of New Zealand, early access, DOI: https://doi.org/10.1080/03036758.2022.2090966, 2022.

[19] Q. Fan, Y. Bi(毕莹)*, B. Xue, M. Zhang. “Genetic Programming for Feature Extraction and Construction in Image Classification,” Applied Soft Computing, vol. 118, DOI: https://doi.org/10.1016/j.asoc.2022.108509, 2022. ( IF=8.263)

[20] H. Al-Sahaf, Y. Bi(毕莹), et al. “A Survey on Evolutionary Machine Learning,” Journal of the Royal Society of New Zealand, vol. 49, no. 2, pp. 205-228, 2019.

[21] M. Lu, Y. Bi(毕莹), et al. “Genetic Programming for High-Level Feature Learning in Crop Classification,” Remote Sensing, vol. 14, no.16, pp. 3982, 2022. (IF=4.848)

[22] C. Wen, M. Lu, Y. Bi(毕莹), S. Zhang, B. Xue, Q. Zhou, M. Zhang , and W. Wu. “An Object-based Genetic Programming Approach to Cropland Field Extraction,” Remote Sensing, vol. 15, no.10, pp. 347, 2022. (IF=4.848)

[23] 毕莹, 薛冰, 张孟杰. GP 算法在图像分析上的应用综述. 郑州大学学报(工学版), 2018, 39(06):3-13.

[24] Y. Bi(毕莹), B. Xue, M. Zhang. “Evolving Deep Forest with Automatic Feature Extraction for Image Classification Using Genetic Programming,” Proceedings of The Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN 2020), Lecture Notes in Computer Science. vol. 12269. Springer. Leiden, The Netherlands, September 5-9, 2020. pp. 3-18. (CCF B )

[25] Y. Bi(毕莹), M. Zhang, and B. Xue. “Genetic Programming for Automatic Global and Local Feature Extraction to Image Classification,” Proceedings of IEEE Congress on Evolutionary Computation (CEC, 2018). IEEE Press. Rio de Janeiro, Brazil. 8-13 July 2018. pp. 1-8. (优秀学生论文提名, 1%)

[26] Y. Bi(毕莹), B. Xue, and M. Zhang. “An Automated Ensemble Learning Framework Using Genetic Programming for Image Classification,” Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2019). ACM Press. Prague, Czech Republic. 13-17 July 2019. pp. 365-373. (CCF C)