郑州大学计算智能实验室

Computational Intelligence Laboratory

万晓雪

undefined   

万晓雪,博士,讲师

E-mail:1570742901@qq.com


万晓雪,2025年6月毕业于中南大学自动化学院控制工程研究所,桂卫华院士团队。目前就职于郑州大学电气与信息工程学院。主要研究方法为复杂工业过程系统建模与优化、故障诊断、数据挖掘和深度学习。以第一作者和通讯作者共发表15篇论文,其中在控制领域的权威期刊中发表中科院1区TOP论文9篇(含第一作者7篇,通讯作者2篇)。主持湖南省研究生科研创新项目和中南大学自主探索创新项目各1项。获国家奖学金、湖南省优秀毕业生和优秀学生等多项荣誉。获“华为杯”第五届中国研究生人工智能创新大赛国家级三等奖和湖南省第六届研究生电子设计竞赛省级一等奖等多个奖项。


主要发表论文:

[1] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Memory Shapelet Learning for Early Classification of Streaming Time Series. IEEE Transactions on Cybernetics. 2024, 54(5):2757-2770. (IF: 9.4, SCI, 中科院一区TOP).

[2] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Multiview Shapelet Prototypical Network for Few-Shot Fault Incremental Learning[J]. IEEE Transactions on Industrial Informatics, 2024.20(10):11751-11762.(IF: 11.7, SCI, 中科院一区TOP).

[3] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Convertible Shapelet Learning with Incremental Learning Capability for Industrial Fault Diagnosis under Shape Shift Samples[J]. IEEE Transactions on Industrial Informatics, 21(4): 3356-3365. (IF: 11.7, SCI, 中科院一区TOP).

[4] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Unknown fault incremental learning based on shapelet prototypical network for streaming industrial signals[J]. Engineering Applications of Artificial Intelligence, 2025, 161: 112094.  (IF:8.0, SCI, 中科院一区 TOP).

[5] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Multi-generator adversarial dynamic spatial–temporal shapelet network for anode effect prediction in aluminum electrolysis process[J]. Advanced Engineering Informatics, 2024, 62: 102609. (IF: 9.9, SCI, 中科院一区TOP).

[6] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. Prior knowledge-augmented unsupervised shapelet learning for unknown abnormal working condition discovery in industrial process[J]. Advanced Engineering Informatics, 2024, 60: 102429. (IF: 9.9, SCI, 中科院一区TOP)

[7] Wan Xiaoxue, Cen Lihui, Yue Weichao, et al. Failure mode and effect analysis with ORESTE method under large group probabilistic free double hierarchy hesitant linguistic environment[J]. Advanced Engineering Informatics, 2024, 59: 102353. (IF: 9.9, SCI, 中科院一区TOP)

[8] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. A novel shapelet transformation method for classification of multivariate time series with dynamic discriminative subsequence and application in anode current signals[J]. Journal of Central South University, 2020, 27(1): 114-131. (IF: 4.4, SCI, 中科院二区)

[9] Wan Xiaoxue, Cen Lihui, Chen Xiaofang, et al. A novel multiple temporal-spatial convolution network for anode current signals classification[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(11): 3299-3310. (IF:3.1, SCI, 中科院三区)

[10] Yue Weichao, Hou Linfeng, Wan Xiaoxue*, et al. Consensus-based probabilistic hesitant intuitionistic linguistic Petri nets for knowledge-intensive work of superheat degree identification[J]. Advanced Engineering Informatics, 2024, 59: 102261. (IF: 9.9, SCI, 中科院一区TOP)

[11] Yue Weichao, Chai Jianing, Wan Xiaoxue*, et al. Root cause analysis for process industry using causal knowledge map under large group environment[J]. Advanced Engineering Informatics, 2023, 57: 102057. (IF: 9.9, SCI, 中科院一区TOP)

[12] Yue Weichao, Hou Linfeng, Wan Xiaoxue*, et al. Superheat degree recognition of aluminum electrolysis cell using unbalance double hierarchy hesitant linguistic Petri nets[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-15. (IF: 5.6, SCI, 中科院二区TOP)

[13] Yue Weichao, Hu Haiyang, Wan Xiaoxue*, et al. A Domain Knowledge-Supervised Framework Based on Deep Probabilistic Generation Network for Enhancing Industrial Soft Sensing. IEEE Transactions on Instrumentation and Measurement, 2025, 74:1-10. (IF: 5.6, SCI, 中科院二区)

[14] Yue Weichao, Chai Jianing, Wan Xiaoxue*, et al. PKG-DTSFLN: Process Knowledge-guided Deep Temporal–spatial Feature Learning Network for anode effects identification[J]. Journal of Process Control, 2024, 138: 103221. (IF: 3.3, SCI, 中科院二区)

[15] Yue Weichao, Wan Xiaoxue*, et al. Simplified neutrosophic Petri nets used for identification of superheat degree[J]. International Journal of Fuzzy Systems, 2022, 24(8): 3431-3455. (IF: 3.6, SCI, 中科院三区)