学校主页 郑大邮箱
中原关键金属实验室
郑州大学
 
  学术动态
当前位置: 首页>>学术动态
      

“材智荟·大讲堂”系列讲座(二十八)之Sviatlana Lamaka研究员

2024年10月22日  点击:[]

为营造浓厚的学术氛围,由材料科学与工程学院主办,先进轻合金材料研究所承办的“材智荟·大讲堂”讲坛,将邀请德国Helmholtz Zentrum Hereon研究中心表面科学研究所电化学与大数据系系主任Sviatlana Lamaka研究员为广大研究生作学术报告,欢迎广大师生积极参加!

 报告时间∶20241030日下午 14:00-18:00

报告地点:主校区材料科学与工程学院教学楼207报告厅

报告人简介:

女人戴着眼镜描述已自动生成

Dr. Sviatlana Lamaka is currently the Head of Department of “Electrochemistry and Big Data” at Institute of Surface Science of Helmholtz Zentrum Hereon in Germany. Her field of research is corrosion science, with emphasis on mechanistic understanding of light metal degradation for combating it or benefiting from it when it comes to aqueous Mg-air and secondary Zn-ion batteries or in vitro degradation of bioresorbable Mg-, Zn- and Fe-based implants. Dr. Lamaka is actively involved in high-throughput robotic and in silico screening of corrosion inhibitors, understanding their inhibition mechanisms and compatibility with protective or conversion coatings; localized electrochemical techniques for corrosion research and modelling; understanding (micro)galvanic and atmospheric corrosion and accelerated corrosion testing.

Sviatlana Lamaka博士现任德国Helmholtz Zentrum Hereon研究中心表面科学研究所电化学与大数据系系主任。她的研究领域是腐蚀科学,侧重于轻金属降解的机理研究,旨在解决或利用这一机理来促进水性镁空气电池、二次锌离子电池或生物可吸收镁基、锌基和铁基植入物体外降解等研究。Lamaka博士积极参与高通量机器人筛选和计算机虚拟筛选腐蚀抑制剂的工作,了解这些抑制剂的抑制机理及其与防护涂层或转化涂层的相容性;利用局部电化学技术进行腐蚀研究和建模;研究(微)电偶腐蚀和大气腐蚀,并进行加速腐蚀测试。

Dr. Lamaka attained her PhD in Analytical Chemistry in 2002, in Minsk, Belarus and dived into corrosion problems at the University of Aveiro and University of Lisbon in Portugal from 2005, before moving to Germany in 2015. Dr. Sviatlana Lamaka co-authored over 160 peer-reviewed publications, patents and book chapters that found interest among the peers with over 10000 citations and yielding an H index of 55. She coordinated several European, national and bilateral projects with multiple academic and industrial partners and enjoys continuous collaboration with international colleagues across the globe.

Lamaka博士于2002年在白俄罗斯明斯克获得分析化学博士学位,并于2005年起在葡萄牙阿维罗大学和里斯本大学投身于腐蚀问题研究,后于2015年移居德国。Sviatlana Lamaka博士与他人合著了160多篇经过同行评审的论文、专利和书籍章节,这些作品在同行中引起了广泛关注,被引次数超过10000次,H指数为55。她负责了多个欧洲、国家和双边项目,与多个学术和工业合作伙伴合作,并与全球的国际同行保持着持续的合作。

报告主题及摘要:

(一)High-throughput and in silico exploration of corrosion inhibitors on the example of magnesium alloys

Rapid development of AI and data driven machine learning methods combined with expansion of high-throughput experimental protocols supported by automation and robotics leads to paradigm shifting changes in scientific developments. With this in mind, the lecture will provide an overview of the latest developments in the corrosion inhibition field. A newly released corrosion inhibitor database incorporating over 2400 individual compounds for a variety of metallic substrates will be demonstrated https://excorr.web.app/about. The importance of scientific data sharing will be highlighted, following the best practices for uniform data reporting makes data sharing more efficient. On the example of magnesium alloys, experimental and computational screening of corrosion inhibitors will be presented. These methods provide versatile and reliable data to train quantitative structure-property relationship (QSPR) models. The overview will be given of high-throughput experimental methods, including robotic data acquisition and recently developed techniques of image recognition. The pitfalls of this new approach have been uncovered by topographic and classical volume loss validation. New, large experimental database for magnesium AZ31 will be presented, composed of over 230 individual compounds, all tested at identical experimental conditions. Three different approaches for quantification of inhibition efficiency will be compared in terms of linearity of the values of diverse datasets. The extensive experimental database serves as input to train QSPR models, employing machine learning and other AI algorithms. The models then predict effective corrosion inhibitors among hitherto untested potent commercially available compounds which are experimentally validated.

(一)以镁合金为例的高通量和计算机模拟腐蚀抑制剂探索

人工智能和数据驱动的机器学习方法的快速发展,结合自动化和机器人技术支持的高通量实验协议的扩展,正在引发科学发展的范式转变。鉴于此,本讲座将概述腐蚀抑制领域的最新进展。将展示一个新发布的腐蚀抑制剂数据库,该数据库包含针对各种金属基材的超过2400种单独化合物,网址为:https://excorr.web.app/about。将强调科学数据共享的重要性,并遵循统一数据报告的最佳实践,以提高数据共享的效率。以镁合金为例,将介绍腐蚀抑制剂的实验和计算机模拟筛选。这些方法提供了多功能且可靠的数据,用于训练定量结构-性质关系(QSPR)模型。将概述高通量实验方法,包括机器人数据采集和最近开发的图像识别技术。通过腐蚀形貌和传统的体积损失验证,已经发现了这种新方法的潜在陷阱。我们将展示一个新的、庞大的镁合金AZ31实验数据库,该数据库包含超过230种单独化合物,且所有化合物均在相同的实验条件下进行了测试。将从线性角度比较三种不同的抑制效率量化方法,这些方法适用于不同的数据集。庞大的实验数据库被用作训练QSPR模型的输入,采用机器学习和其他人工智能算法。然后,这些模型在未经测试的潜在商用化合物中预测有效的腐蚀抑制剂,并通过实验进行验证。

(二)Degradation mechanisms of bioabsorbable metals: (dis)similarities of the metal-electrolyte interface during in vitro degradation of Mg-, Zn- and Fe-alloys

A broad range of temporary implants for orthopedic applications, as well as surgical clips, cardiovascular and ureteral stents require tailored degradation rate and profile. While access to the in vivo testing is limited and is typically reserved for the final device validation, in vitro degradation is widely used for material selection and tailoring. Regrettably, the reports on strong discrepancy between in vivo and in vitro degradation profiles are common and applying in vivo - in vitro correlation does not suffice for understanding degradation mechanisms. These call for revisiting methodological approaches for selecting in vitro degradation conditions, including testing media, flow, temperature, pH buffering, prevention of microbial contamination, etc. Moreover, expedient material tailoring, and its safe application in vivo relies on profound understanding of its degradation mechanisms. Comprehensive study of various aspects at all stages of metal degradation is therefore of high relevance for development, optimization, validation and certification of biodegradable metallic implants.

The lecture will cover the electrolyte selection for in vitro measurements, testing methods, degradation rates and interface condition of Mg-, Zn- and Fe-alloys. Since the degradation of bioabsorbable metals in vivo occurs in relatively thin electrolyte layer, we emphasize the importance and show the means of studying the degradation processes with spatially resolved electrochemical methods. The experimental setups for assessing the interfacial parameters such as pH variation, O2 consumption, and H2 evolution will be presented. Important that all these parameters are assessed locally at the interface of degrading metal and reflect the electrolyte condition faced by surrounding cells and tissues at the implantation site. Accompanied by the results of integral electrochemistry (e.g. EIS), weight loss measurements, and characterization of accumulating degradation products, these constitute a rich dataset for deducing degradation mechanisms.

(二)生物可吸收金属的降解机制:MgZnFe合金体外降解过程中金属-电解质界面的相似性/差异性

在骨科应用、手术夹、心血管和输尿管支架等领域,广泛需要具有特定降解速率和降解特性的临时植入物。因为体内测试的机会有限,且通常仅用于最终设备的验证,因此体外降解测试在材料选择和定制方面得到了广泛应用。然而,体内和体外降解特性之间存在显著差异的报告屡见不鲜,仅通过体内-体外相关性来理解降解机制是不够的。这要求重新审视选择体外降解条件的方法论,包括测试介质、流速、温度、pH缓冲、防止微生物污染等方面。此外,材料的快速定制及其在体内的安全应用,都依赖于对其降解机制的深刻理解。因此,全面研究金属降解各个阶段的各种方面,对于生物可降解金属植入物的开发、优化、验证和认证具有重要意义。

本讲座将涵盖用于体外测量的电解质选择、测试方法、MgZnFe合金的降解速率和界面状况。由于生物可吸收金属在体内的降解发生在相对较薄的电解质层中,我们强调了研究降解过程时使用空间分辨电化学方法的重要性和方法。将介绍评估界面参数(如pH变化、O₂消耗和H₂析出)的实验设置。重要的是,所有这些参数都是在降解金属的界面局部评估的,反映了植入部位周围细胞和组织所面临的电解质状况。结合电化学阻抗谱(EIS)等积分电化学结果、重量损失测量和累积降解产物的表征,这些数据构成了一个丰富的数据集,用于推断降解机制。

上一条:外国专家大讲堂-高唯院士《纳米材料的发展及其在表面工程和能源应用中的作用》 下一条:“材智荟·大讲堂”系列讲座公告(三十)郑俊超教授和王接喜教授

关闭