中心博士生刘虎论文已在线发表在一区杂志Nanoscale(IF=7.6)上

作者:国家橡塑模具研究 时间:2016-07-04 点击数:

Hu Liu, Jiachen Gao, Wenju Huang, Kun Dai, Guoqiang Zheng, Chuntai Liu, Changyu Shen, Jiang Guo, Xingru Yan, Zhanhu Guo. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers.Nanoscale, 2016, DOI: 10.1039/C6NR02216B.

 

ABSTRACT:Thermoplastic polyurethane (TPU) based conductive polymer composites (CPCs) with a reduced percolationthreshold and tunable resistance–strain sensing behavior were obtained through the addition of synergistic carbon nanotubes (CNT) and graphene bifillers. The percolation threshold of graphene was about 0.006 vol% when the CNT content was fixed at 0.255 vol% that is below the percolation threshold of CNT/TPU nanocomposites. The synergistic effect between graphene and CNT was identified using the excluded volume theory. Graphene acted as a ‘spacer’ to separate the entangled CNTs from each other and the CNT bridged the broad gap between individual graphene sheets, which was beneficial for the dispersion of CNT and formation of effective conductive paths, leading to better electrical conductivity at a lower conductive filler content. Compared with the dual-peak response pattern of the CNT/TPU based strain sensors, the CPCs with hybrid conductive fillers displayed single-peak response patterns under small strain, indicating good tunability with the synergistic effect of CNT and graphene. Under larger strain, prestraining was adopted to regulate the conductive network, and better tunable single-peak response patterns were also obtained. The CPCs also showed good reversibility and reproductivity under cyclic extension.This study paves the way for the fabrication of CPC based strain sensors with good tunability.

 

 

Copyright @2012-2019 郑州大学橡塑模具国家工程研究中心材料成型及模具技术教育部重点实验室 All Right Reserved.