代表文章 [1] Jia Q, Li Y, Yan Z, et al. Reactive power market design for distribution networks with high photovoltaic penetration[J]. IEEE Transactions on Smart Grid, 2022, 14(2): 1642-1651. [2] Jia Q, Li Y, Yan Z, et al. A reinforcement-learning-based bidding strategy for power suppliers with limited information[J]. Journal of Modern Power Systems and Clean Energy, 2021, 10(4): 1032-1039. [3] Jia Q, Chen S, Yan Z, et al. Optimal incentive strategy in cloud-edge integrated demand response framework for residential air conditioning loads[J]. IEEE Transactions on Cloud Computing, 2021, 10(1): 31-42. [4] Jia Q, Chen S, Li Y, et al. Deviation insurance for Risk-Averse wind power producers in the Nordic power market[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107431. [5] Huang S, Xiong L, Zhou Y, Liu J, Jia Q, Li P, Wang J. Distributed predefined-time secondary frequency and average voltage control for islanded AC microgrids[J]. IEEE Transactions on Power Systems, 2022. [6] Huang S, Xiong L, Zhou Y, Liu J, Jia Q, Li P, Wang J. A novel distributed predefined-time sliding mode controller for performance enhancement of power system under input saturation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(10): 4284-4297. [7] Huang C, Han D, Yan Z, Li Y, Sun C, Jia Q. Bidding strategy of energy storage in imperfectly competitive flexible ramping market via system dynamics method[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107722. [8] Jia Q, Hu Z, Li Y, et al. A reinforcement learning method for power suppliers' strategic bidding with insufficient information[C]//2021 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2021: 1-5. [9] 贾乾罡, 陈思捷, 严正等. 基于区块链的空调负荷用电权分配:模式与方法[J]. 中国电机工程学报, 2020, 40(11): 3393-3402. [10] 贾乾罡, 陈思捷, 李亦言等. 有限信息环境下基于学习自动机的发电商竞价策略[J].电力系统自动化, 2021, 45(06): 133-139. [11] 吴清, 贾乾罡, 严正, 钟准, 郭颂. 考虑主体信用的配电网分布式绿电交易方法[J]. 上海交通大学学报, 2024, 58(01): 11-18. [12] 王栋, 李达, 冯景丽, 贾乾罡, 平健. 考虑绿色属性的多微网间电能可信自治交易方法[J]. 电力系统自动化, 2022, 46(23): 1-10. [13] 李亦言, 胡荣兴, 宋立冬, 贾乾罡, 陆宁. 机器学习在智能配用电领域中的应用:北美工程实践概述[J]. 电力系统自动化, 2021, 45(16): 99-113. |