科学研究

您当前所在位置是: 首页 > 科学研究 > 科研团队 >

非线性发展方程与无穷维动力系统

发布日期:2013-01-10     作者: admin     浏览数:    分享到:

科研团队简介

研究方向:非线性发展方程与无穷维动力系统
 
研究对象及发展前景
 
历史沿革        
   本团队的前身是由郑州大学数学系陈国旺教授在1978年创办的“郑州非线性偏微分方程讨论班”。           陈国旺           教授1957年毕业于北京大学数学力学系,1960.10月赴捷克查理士大学数学研究所攻读副博士学位,1964年10月在该校获副博士学位并学成回国。自1978年起,他在郑州大学数学系主持一个非线性偏微分方程讨论班,该讨论班是文革后国内最早引进、吸收和实践国际先进的非线性数学理论的科研群体之一,它设在郑州大学数学系至今已坚持30多年,在国内享有很高的声誉,培养了一大批从事非线性偏微分方程研究的博士、硕士和青年教师。其中一批已成为国内外知名的专家、教授。
以郑州大学数学系非线性发展方程研究方向为依托, 陈国旺教授负责郑州大学数学研究所的工作、参与了《偏微分方程》(英文版)杂志的创办,任副主编之一并负责编辑部日常工作,该杂志对我国偏微分方程事业的发展及与国外的学术交流起到了重要作用。它对本团队的发展和影响的扩大也起着十分重要的作用。
在陈国旺教授的支持和倡导下,本团队已实现新老交接,由杨志坚教授牵头,凝聚河南省诸多高校从事非线性偏微分方程研究的主力,继续深入非线性发展方程与无穷维动力系统方向的研究。
 
研究对象及发展前景        
   本团队主要研究出自科学技术中的非线性发展方程及所对应的无穷维动力系统。其特点是:实际背景鲜明、方程高阶、非线性程度高、处理难度大、应用前景明确。本团队在诸如:Boussinesq型方程、Greenberg型粘弹性波动方程、Kirchhoff 型方程、Kirchhoff-Boussinesq 型方程、具阻尼双弥散非线性发展方程和Benney-Luke方程 等的研究方面、在诸如上述方程整体解的存在性与不存在性、解的渐近性以及对应的无穷维动力系统的长时间行为的研究方面已取得许多具有国际水平的成果。这些成果和方法已在国际上被广泛引用跟踪研究。经SCI和Mathematical Reviews数据库检索,团队主要成员近年来所发表论文被国际同行引用300多次。

   本团队自1993年至今已连续获得6项国家自然科学基金支持,凝聚了河南省诸多高校从事非线性偏微分方程研究的主力,发展前景广阔。

团队成员

教 授:陈国旺、杨志坚、王书彬。

副教授:赵占才。

 师:李珂(博士)、范兆慧(博士)、郭红霞、达芳。

团队成员承担的主要科研项目
 
陈国旺        
1.国家自然科学基金资助项目《非线性高阶发展方程及其应用》1994.1—1996.12已完成。
2.国家自然科学基金资助项目《非线性高阶发展方程(组)理论和应用研究》1997.1—1999.12已完成。
3.国家自然科学基金资助项目《非线性高阶发展方程中的若干问题》2001.1—2003.12已完成。
4.国家自然科学基金资助项目《非线性高阶发展方程研究》2004.1—2006.12已完成。
5.国家自然科学基金资助项目《非线性高阶发展方程》2007.1—2009.12. 已完成。
杨志坚        
1.国家自然科学基金资助项目《非线性高阶发展方程的理论及其应用》2010.1—2012.12.
2.河南省基础与前沿技术研究计划项目:《非线性高阶发展方程的长时间行为研究》2009.1—2011.12.
3.国家留学基金委员会“中国政府派遣研究员项目”《非线性高阶发展方程的渐近行为》2005.10--2006.10。
王书彬        
1.河南省基础与前沿技术研究计划项目《高阶非线性波动方程(组) 》2008.1—2010.12.
 
团队成员发表的主要科研论文
陈国旺        
1.陈国旺, 郭红霞, Global existence of solution of Cauchy problem for nonlinear pseudo-parabolic equation, J. Differential Equations 245 (2008) 2705–2722.
2.陈国旺, 郭红霞, 张宏伟, Global existence of solutions of Cauchy problem for generalized system of nonlinear evolution equation arising from DNA, J. Mathematical Physics, 2009,           50, 083514-1-23.
3.王书彬, 徐桂香, 陈国旺, Cauchy problem for the generalized Benney-Luke equation, J. Mathematical Physics, 48 (2007) 0373521-16.
4.王书彬, 陈国旺, Cauchy problem for the nonlinear Schrodinger-IMBq equations, Discrete and Continuous Dynamical Systems--Series B, 2006, 6 (1): 203-214.
5.陈国旺,陆博,  The initial–boundary value problems for a class of nonlinear wave equations with damping term J. Math. Anal. Appl. 351 (2009) 1–15.
6.陈国旺, 王艳萍, A note on “On the existence of solutions of quasi-linear wave equations with viscosity”, Nonlinear Anal. TMA. 2008, 68: 609-620.
7.陈翔英, 陈国旺, Asymptotic behavior and blowup of solutions to a nonlinear evolution equation of fourth order, Nonlinear Anal. TMA. 2008, 68: 892-904.
8.陈国旺, 达芳, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation,  Nonlinear Analysis (2008), doi:10.1016/j.na.
9.陈国旺, 岳红云, 王书彬, The initial boundary value problem for quasi-linear wave equation with viscous damping, J. Math. Anal. Appl. 2007, 331: 823-839.
10.王书彬, 陈国旺, Cauchy problem for the generalized double dispersion equation, Nonlinear Anal. TMA. 2006, 64: 159-173.
11.陈国旺, 张宏伟, Initial boundary value problem for a system of generalized IMBq equations, Mathematical Methods in the Applied Sciences, 2004, 27: 497-518.
12.陈国旺, 王艳萍, 赵占才, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 2004, 17: 491-497.
13.陈国旺, 王艳萍, 王书彬, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl. 2004, 299: 563-577.
14.杨志坚, 陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math, Anal. Appl., 2003, 285: 604-618.
15.王书彬, 陈国旺, The Cauchy problem for the generalized IMBq equation in            , Journal of Mathematical Analysis and Applications, 2002, 266: 38-54.
16.王书彬,陈国旺,Small amplitude solutions of the generalized IMBq equation, Journal of Mathematical Analysis and Applications, 2002, 274: 846-866.
17.陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of nonlinear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
18.陈国旺, 王书彬, Existence and Nonexistence of Global Solutions for the Generalized IMBq Equation,Nonlinear Analysis, TMA. 1999, 36 (8): 961-980.
19.陈国旺, 陈国旺论文集, 世界图书出版公司, 北京 广州 西安, 2005.
杨志坚        
1.杨志坚, Longtime behavior of the Kirchhoff type equation with strong damping on           ,             J. Differential Equations, 2007, 242: 269-286. (已被《SCI》收录)
2.杨志坚, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J. Differential Equations, 2003, 187: 520-540. (已被《SCI》收录)
3.杨志坚, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models,           J. Mathematical Physics,           51, 1 2010, doi:10.1063/1.3303633
4.杨志坚, 靳宝霞, Global attractor for a class of Kirchhoff models,           J. Mathematical Physics, 2009, 50 (3) 032701-1-29.
5.杨志坚, Global attractor for a nonlinear wave equation arising in elastic waveguide model,  Nonlinear Analysis 70 (2009) 2132–2142.
6.杨志坚, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow,  Mathematical Methods in the Applied Sciences, 32: 1082-1104(2009)
7.           宋长明           ,           杨志坚           , Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, Vol.6, No.4, 367-383, 2009
8.           宋长明           ,           杨志坚           ,  Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.1175 (2009).
9.杨志坚, 郭柏灵, Cauchy problem for the multi-dimensional Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2008, 340: 64-80.
10.M. Nakao, 杨志坚, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.
11.杨志坚, Cauchy problem for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2006, 320: 859-881. 
12.杨志坚, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, Journal of Mathematical Analysis and Applications, 2006, 313: 197-217.
13.杨志坚,  Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.
14.杨志坚,  Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, Journal of Mathematical Analysis and Applications, 2004, 300: 218-243.
15.杨志坚, 王霞,  Blowup of solutions for improved Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2003, 278: 335-353. 
16.杨志坚, 王霞, Blowup of solutions for the “bad” Boussinesq-type equation, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 282-298. 
17.杨志坚,  陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 606-620. 
18.杨志坚,  Initial boundary value problem for a class of nonlinear strongly damped wave equation, Mathematical Methods in the Applied Sciences, 2003, 26 (12): 1047-1066. 
19.杨志坚,  On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation,          Nonlinear Anal . 2002, 51(7): 1251-1263.        
20.杨志坚,  Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences,2002, 25: 795-814.
21.杨志坚,  Blowup of solutions for a class of evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences, 2002, 25: 825-833. 
22.陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of non-linear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
23.杨志坚,  Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation, Mathematical Methods in the Applied Sciences, 1998, 21: 1467-1477.
24.杨志坚, 宋长明,  Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.
25.陈国旺, 邢家省, 杨志坚, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis           , 1996, 26: 1255-1270.
26.杨志坚,  陈国旺,  Boussinesq 型方程的周期边界问题与初值问题的解的存在性, 应用数学学报, 2000, 23 (2): 261-269.
27.杨志坚,  陈国旺, 具有阻尼项的非线性波动方程的初值问题, 应用数学学报, 2000, 23 (1): 45-54.
28.杨志坚, 陈国旺, 一类广义Boussinesq 型方程解的Blowup, 数学物理学报, 1996, 16 (1): 31-39.
王书彬        
1.王书彬,李梅岭,The Cauchy problem for coupled IMBq equations           IMA Journal of Applied Mathematics (2009)           74, 726−740
2.王书彬, 徐桂香, 陈国旺, Cauchy problem for the generalized Benney-Luke equation, J. Mathematical Physics, 48 (2007) 0373521-16.
3.王书彬, 陈国旺, Cauchy problem for the nonlinear Schrodinger-IMBq equations,
 Discreteand continuous dynamical Systems- Series B, 2006, 6 (1): 203-214.
4.王书彬, 薛红霞, Global solution for a generalized Boussinesq equation, Appl. Math. Comput. 204  (2008) 130–136.
5.王书彬, 陈国旺, The Cauchy problem for the generalized IMBq equation in           , Journal of Mathematical Analysis and Applications, 2002, 266: 38-54.
6.王书彬, 陈国旺, Small amplitude solutions of the generalized IMBq equation, Journal of Mathematical Analysis and Applications, 2002, 274: 846-866. 
7.陈国旺, 王艳萍, 王书彬, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl. 2004, 299: 563-577.
8.王书彬, 陈国旺, Cauchy problem for the generalized double dispersion equation, Nonlinear
 Anal. TMA. 2006, 64: 159-173.
9.陈国旺, 王书彬,Existence and Nonexistence of Global Solutions for the Generalized IMBq Equation,Nonlinear Analysis, TMA. 1999, 36 (8): 961-980.
10.陈国旺, 王书彬 , 张宏伟, n维广义IMBq方程的初边值问题, 数学年刊, 2001, 22A (4): 453-460.
11.陈国旺, 王书彬, 张宏伟, The initial boundary value problem for n-dimensional generalized IMBq equation, Chinese Journal of Contemporary Mathematics, 2001, 22 (3): 259-268.
12.王书彬, 非线性拟双曲型积分微分方程得初边值问题和初值问题, 应用数学学报, 1995, 18(4): 567-578.
13.陈国旺, 王书彬, Cauchy Problem for Generalized IMBq Equation, Proceedings of Conference on Nonlinear Partial Differential Equations and Applications, 1998, 91-97, World Scientific, Singapore. New Jersey. London. Hong Kong.
14.王书彬, 广义Boussinesq方程的Cauchy问题, 博士学位论文, 郑州大学, 2001年.
15.王书彬,徐桂香, The Cauchy problem for the Rosenau equation, Nonlinear Analysis (2009) doi:10.1016/j.na.2008.10.085.(《SCI》源刊)
赵占才        
1.陈国旺, 王艳萍, 赵占才, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 2004, 17: 491-497.
2.陈国旺, 杨志坚, 赵占才, Initial value problems and first boundary problems for             a class of quasi-linear wave equations. Acta Math. Appl. Sinica, 1993, 9 (4), 289-301.        
李珂        
1. 李珂, 郭红霞, 郭宗明, Positive single rupture solutions to a semilinear elliptic equation, Applied Mathematics Letters, 2005, 18: 1177-1183.
2. 郭红霞, 郭宗明, 李珂, Positive solutions of a semilinear elliptic equation with singular nonlinearity. J. Math. Appl. Anal. 2006, 323 (1): 344-359.
3. 李珂, 陈化, 一类无穷阶退化抛物方程解的存在性          , 数学学报 中文版 2008, 51 (6).
4. 陈化, 李珂, The existence and regularity of multiple solutions for a class of infinitely
 degenerate elliptic equations, Mathematische Nachrichten, 2008
范兆慧        
1.范兆慧,钟承奎,Attractors for parabolic equations with dynamic boundary conditions Nonlinear Analysis 68 (2008) 1723–1732
郭红霞        
1.陈国旺, 郭红霞, 张宏伟, Global existence of solutions of Cauchy problem for generalized system of nonlinear evolution equation arising from DNA, J. Mathematical Physics, 2009,           50, 083514-1-23.
2.李珂, 郭红霞, 郭宗明, Positive single rupture solutions to a semilinear elliptic equation, Applied Mathematics Letters, 2005, 18: 1177-1183.
3.郭红霞, 郭宗明, 李珂, Positive solutions of a semilinear elliptic equation with singular nonlinearity. J. Math. Appl. Anal. 2006, 323 (1): 344-359.
达芳        
1. 陈国旺, 达芳, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation,  Nonlinear Analysis (2008), doi:10.1016/j.na.2008.10.132
 
团队成员主要获奖情况
1. 《流体力学与粘弹性力学中的非线性模型方程》(杨志坚、宋长明、王书彬等)  获得2000年河南省科技进步二等奖。
2. 《非线性高阶发展方程--物理与力学中的若干模型方程》(杨志坚、王书彬等) 获得1997年化学工业部科技进步三等奖。
3. 《Existence and nonexistence of global solutions for the generalized IMBq equation》(陈国旺,王书彬)2000年获河南省自然科学优秀学术论文一等奖。

 

上一篇:微分方程, 非线性分析, 系统控制