陈国旺
1.陈国旺, 郭红霞, Global existence of solution of Cauchy problem for nonlinear pseudo-parabolic equation, J. Differential Equations 245 (2008) 2705–2722.
2.陈国旺, 郭红霞, 张宏伟, Global existence of solutions of Cauchy problem for generalized system of nonlinear evolution equation arising from DNA, J. Mathematical Physics, 2009,
50, 083514-1-23.
3.王书彬, 徐桂香, 陈国旺, Cauchy problem for the generalized Benney-Luke equation, J. Mathematical Physics, 48 (2007) 0373521-16.
4.王书彬, 陈国旺, Cauchy problem for the nonlinear Schrodinger-IMBq equations, Discrete and Continuous Dynamical Systems--Series B, 2006, 6 (1): 203-214.
5.陈国旺,陆博, The initial–boundary value problems for a class of nonlinear wave equations with damping term J. Math. Anal. Appl. 351 (2009) 1–15.
6.陈国旺, 王艳萍, A note on “On the existence of solutions of quasi-linear wave equations with viscosity”, Nonlinear Anal. TMA. 2008, 68: 609-620.
7.陈翔英, 陈国旺, Asymptotic behavior and blowup of solutions to a nonlinear evolution equation of fourth order, Nonlinear Anal. TMA. 2008, 68: 892-904.
8.陈国旺, 达芳, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation, Nonlinear Analysis (2008), doi:10.1016/j.na.
9.陈国旺, 岳红云, 王书彬, The initial boundary value problem for quasi-linear wave equation with viscous damping, J. Math. Anal. Appl. 2007, 331: 823-839.
10.王书彬, 陈国旺, Cauchy problem for the generalized double dispersion equation, Nonlinear Anal. TMA. 2006, 64: 159-173.
11.陈国旺, 张宏伟, Initial boundary value problem for a system of generalized IMBq equations, Mathematical Methods in the Applied Sciences, 2004, 27: 497-518.
12.陈国旺, 王艳萍, 赵占才, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 2004, 17: 491-497.
13.陈国旺, 王艳萍, 王书彬, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl. 2004, 299: 563-577.
14.杨志坚, 陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math, Anal. Appl., 2003, 285: 604-618.
15.王书彬, 陈国旺, The Cauchy problem for the generalized IMBq equation in
, Journal of Mathematical Analysis and Applications, 2002, 266: 38-54.
16.王书彬,陈国旺,Small amplitude solutions of the generalized IMBq equation, Journal of Mathematical Analysis and Applications, 2002, 274: 846-866.
17.陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of nonlinear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
18.陈国旺, 王书彬, Existence and Nonexistence of Global Solutions for the Generalized IMBq Equation,Nonlinear Analysis, TMA. 1999, 36 (8): 961-980.
19.陈国旺, 陈国旺论文集, 世界图书出版公司, 北京 广州 西安, 2005.
杨志坚
1.杨志坚, Longtime behavior of the Kirchhoff type equation with strong damping on
, J. Differential Equations, 2007, 242: 269-286. (已被《SCI》收录)
2.杨志坚, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J. Differential Equations, 2003, 187: 520-540. (已被《SCI》收录)
3.杨志坚, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models,
J. Mathematical Physics,
51, 1 2010, doi:10.1063/1.3303633
4.杨志坚, 靳宝霞, Global attractor for a class of Kirchhoff models,
J. Mathematical Physics, 2009, 50 (3) 032701-1-29.
5.杨志坚, Global attractor for a nonlinear wave equation arising in elastic waveguide model, Nonlinear Analysis 70 (2009) 2132–2142.
6.杨志坚, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Mathematical Methods in the Applied Sciences, 32: 1082-1104(2009)
7.
宋长明
,
杨志坚
, Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, Vol.6, No.4, 367-383, 2009
8.
宋长明
,
杨志坚
, Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.1175 (2009).
9.杨志坚, 郭柏灵, Cauchy problem for the multi-dimensional Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2008, 340: 64-80.
10.M. Nakao, 杨志坚, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.
11.杨志坚, Cauchy problem for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2006, 320: 859-881.
12.杨志坚, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, Journal of Mathematical Analysis and Applications, 2006, 313: 197-217.
13.杨志坚, Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.
14.杨志坚, Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, Journal of Mathematical Analysis and Applications, 2004, 300: 218-243.
15.杨志坚, 王霞, Blowup of solutions for improved Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2003, 278: 335-353.
16.杨志坚, 王霞, Blowup of solutions for the “bad” Boussinesq-type equation, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 282-298.
17.杨志坚, 陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 606-620.
18.杨志坚, Initial boundary value problem for a class of nonlinear strongly damped wave equation, Mathematical Methods in the Applied Sciences, 2003, 26 (12): 1047-1066.
19.杨志坚, On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation, Nonlinear Anal
. 2002, 51(7): 1251-1263.
20.杨志坚, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences,2002, 25: 795-814.
21.杨志坚, Blowup of solutions for a class of evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences, 2002, 25: 825-833.
22.陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of non-linear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
23.杨志坚, Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation, Mathematical Methods in the Applied Sciences, 1998, 21: 1467-1477.
24.杨志坚, 宋长明, Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.
25.陈国旺, 邢家省, 杨志坚, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis
, 1996, 26: 1255-1270.
26.杨志坚, 陈国旺, Boussinesq 型方程的周期边界问题与初值问题的解的存在性, 应用数学学报, 2000, 23 (2): 261-269.
27.杨志坚, 陈国旺, 具有阻尼项的非线性波动方程的初值问题, 应用数学学报, 2000, 23 (1): 45-54.
28.杨志坚, 陈国旺, 一类广义Boussinesq 型方程解的Blowup, 数学物理学报, 1996, 16 (1): 31-39.
王书彬
1.王书彬,李梅岭,The Cauchy problem for coupled IMBq equations
IMA Journal of Applied Mathematics (2009)
74, 726−740
2.王书彬, 徐桂香, 陈国旺, Cauchy problem for the generalized Benney-Luke equation, J. Mathematical Physics, 48 (2007) 0373521-16.
3.王书彬, 陈国旺, Cauchy problem for the nonlinear Schrodinger-IMBq equations,
Discreteand continuous dynamical Systems- Series B, 2006, 6 (1): 203-214.
4.王书彬, 薛红霞, Global solution for a generalized Boussinesq equation, Appl. Math. Comput. 204 (2008) 130–136.
5.王书彬, 陈国旺, The Cauchy problem for the generalized IMBq equation in
, Journal of Mathematical Analysis and Applications, 2002, 266: 38-54.
6.王书彬, 陈国旺, Small amplitude solutions of the generalized IMBq equation, Journal of Mathematical Analysis and Applications, 2002, 274: 846-866.
7.陈国旺, 王艳萍, 王书彬, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl. 2004, 299: 563-577.
8.王书彬, 陈国旺, Cauchy problem for the generalized double dispersion equation, Nonlinear
Anal. TMA. 2006, 64: 159-173.
9.陈国旺, 王书彬,Existence and Nonexistence of Global Solutions for the Generalized IMBq Equation,Nonlinear Analysis, TMA. 1999, 36 (8): 961-980.
10.陈国旺, 王书彬 , 张宏伟, n维广义IMBq方程的初边值问题, 数学年刊, 2001, 22A (4): 453-460.
11.陈国旺, 王书彬, 张宏伟, The initial boundary value problem for n-dimensional generalized IMBq equation, Chinese Journal of Contemporary Mathematics, 2001, 22 (3): 259-268.
12.王书彬, 非线性拟双曲型积分微分方程得初边值问题和初值问题, 应用数学学报, 1995, 18(4): 567-578.
13.陈国旺, 王书彬, Cauchy Problem for Generalized IMBq Equation, Proceedings of Conference on Nonlinear Partial Differential Equations and Applications, 1998, 91-97, World Scientific, Singapore. New Jersey. London. Hong Kong.
14.王书彬, 广义Boussinesq方程的Cauchy问题, 博士学位论文, 郑州大学, 2001年.
15.王书彬,徐桂香, The Cauchy problem for the Rosenau equation, Nonlinear Analysis (2009) doi:10.1016/j.na.2008.10.085.(《SCI》源刊)
赵占才
1.陈国旺, 王艳萍, 赵占才, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 2004, 17: 491-497.
2.陈国旺, 杨志坚, 赵占才, Initial value problems and first boundary problems for a class of quasi-linear wave equations. Acta Math. Appl. Sinica, 1993, 9 (4), 289-301.
李珂
1. 李珂, 郭红霞, 郭宗明, Positive single rupture solutions to a semilinear elliptic equation, Applied Mathematics Letters, 2005, 18: 1177-1183.
2. 郭红霞, 郭宗明, 李珂, Positive solutions of a semilinear elliptic equation with singular nonlinearity. J. Math. Appl. Anal. 2006, 323 (1): 344-359.
3. 李珂, 陈化, 一类无穷阶退化抛物方程解的存在性 , 数学学报 中文版 2008, 51 (6).
4. 陈化, 李珂, The existence and regularity of multiple solutions for a class of infinitely
degenerate elliptic equations, Mathematische Nachrichten, 2008
范兆慧
1.范兆慧,钟承奎,Attractors for parabolic equations with dynamic boundary conditions Nonlinear Analysis 68 (2008) 1723–1732
郭红霞
1.陈国旺, 郭红霞, 张宏伟, Global existence of solutions of Cauchy problem for generalized system of nonlinear evolution equation arising from DNA, J. Mathematical Physics, 2009,
50, 083514-1-23.
2.李珂, 郭红霞, 郭宗明, Positive single rupture solutions to a semilinear elliptic equation, Applied Mathematics Letters, 2005, 18: 1177-1183.
3.郭红霞, 郭宗明, 李珂, Positive solutions of a semilinear elliptic equation with singular nonlinearity. J. Math. Appl. Anal. 2006, 323 (1): 344-359.
达芳
1. 陈国旺, 达芳, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation, Nonlinear Analysis (2008), doi:10.1016/j.na.2008.10.132