量子信息与量子模拟团队

发布时间:2023年08月09日浏览次数:

团队简介

我们是一支研究量子信息和量子模拟领域中各种有趣问题的团队,致力于利用量子物理学的原理和技术来解决信息处理和系统模拟中的挑战。我们汇集了一群对量子科学感兴趣的专家,共同推动这一前沿领域的研究和应用。以下是我们团队的关键特点和研究方向:

1)量子计算:量子计算机通过利用量子叠加和量子纠缠的特性,能够在相对较短的时间内解决许多传统计算机无法解决或需要很长时间才能解决的问题。例如,对于复杂的优化问题和模拟量子系统等领域,量子计算机具有巨大的潜力。团队在基于里德堡原子系统提出了一些列方案,其中部分方案已经被实验实现。

2)量子传感:量子传感是利用量子力学的原理和技术来实现更高的测量精度和灵敏度。量子传感技术可以在多个领域提供重要的应用,如精密测量、地理导航、地震监测、生物医学、环境监测等。通过利用量子干涉和纠缠等现象,量子传感技术能够提供更高的测量精度和更低的测量噪音,从而能够检测和量化微小的物理变化、环境参数或信号,并提供更准确的数据。

3)冷原子:冷原子领域的发展使得研究人员能够探索和研究原子的量子行为,如量子统计、量子纠缠和量子相干等现象。冷原子实验通常利用激光冷却技术和磁场调控技术,将原子气体的动能降低,使原子减速和聚集在一个亚毫开尔文的小区域内。通过精确的实验设置和控制,冷原子研究可以提供与量子信息、量子模拟、精密测量和基础物理等领域相关的重要应用。

4)腔光力学:腔光力学的核心是光与机械振动之间的相互耦合。在光腔形成的高密度的光场中,光子与微型谐振器之间发生光-机械相互作用,光子传递动量和能量给微型谐振器,同时微型谐振器的振动会改变光的性质。腔光力学技术的应用包括操纵和冷却微型谐振器、测量微弱力量和光的频率、研究量子力学效应和量子信息等。

5)拓扑光学:拓扑光学是利用拓扑理论的概念和方法,研究光的特殊行为和拓扑性质。拓扑性质可以用拓扑不变量来描述,它们反映了光传播时存在的特殊结构或性质。通过精确设计和控制光的拓扑结构,可以实现光在材料或光学波导结构中的特殊性质,如边界态、色散关系、传输损耗等。

成员简介

团队包含教师5人:苏石磊 王东阳 徐鹏 吴金雷 行言



苏石磊,副教授,博士生导师

电子邮箱:slsu@zzu.edu.cn

基本信息

苏石磊,博士,1988年2月生,河南尉氏人,郑州大学物理学院光电信息科学研究所副教授,硕士生导师。量子信息与量子模拟课题组长。

学术头衔/兼职

河南省优秀青年科学基金获得者。首届CCF量子计算大会量子计算支撑技术论坛主席。第八届河南省光学学会理事。SCI期刊《Electronics》量子信息与量子计算专题客座编辑。担任包括PRL、PRX Quantum、Laser & Photonics Reviews、PR Applied、PRA、APL、OL、OE等数十种期刊审稿人。

研究方向

1)量子计算与量子信息

2)里德堡原子

3)几何量子计算

4)量子模拟

教育与工作简历

2020.01-至今,郑州大学物理学院,副教授

2019.01-2019.12,郑州大学物理学院,直聘副教授

2018.09-2018.11,丹麦,Aarhus University,受邀访问学者

2016.07-2018.12,郑州大学物理学院,讲师

2013.09-2016.07,哈尔滨工业大学,物理学,博士

2010.09-2013.06,延边大学,光学,硕士

2006.08-2010.06,延边大学,光信息科学与技术,学士

所获荣誉

1)河南省优秀青年科学基金获得者

2)河南省优秀学士学位论文指导教师

3)参加“郑州大学-华中科技大学”青年骨干教师赋能培训并获培训结业证书

指导研究生情况

硕士研究生

2016级 申彩鹏去向:西安交通大学读博

2018级 田亮去向:广州大学读博

2019级 郭富强去向:东北师范大学读博

云梦茹去向:郑州大学硕博连读

李萌去向:郑州西亚斯学院

2020级 魏金峰去向:郑州大学读博

王绿云去向:郑州大学硕博连读

刘冰冰去向:郑州大学读博

孙莉娜去向:哈尔滨工业大学读博

2021级李澳在读

宋佩瑶在读

王琛在读

2022级 高可欣在读

张思宇在读

郭晋康在读

博士研究生

2016级 朱小瑜去向:河南工程学院教师

2021级 云梦茹在读

2022级 郭富强(联合培养)在读

陈瑞(联合培养)在读

2023级 孙莉娜(联合培养)在读

刘冰冰在读

指导本科生情况

1)指导4名本科生分别以第一作者在Phys. Rev. A等期刊发表SCI论文4篇,其中3人分别保送至中国科学技术大学、上海交通大学和南京大学;1人赴国外攻读学位。

2)指导本科生大创项目2项。

科研成果

主要研究领域为里德堡原子量子信息处理、基于优化控制理论的几何量子计算、耗散动力学等。经过十余年的历练与学术积累,主要研究成果简述如下:

1)提出并实验验证了非绝热非循环几何量子计算理论;

2)提出了耗散调控理论,并基于此理论验证了量子物理中耗散-时间不确定关系。该研究被PRL选为Editor's Suggestions,并被美国物理学会(APS)新闻网站Focus专栏报道;同时被欧洲物理学会(IOP)新闻网站PhysicsWorld报道,图注以“新的不确定关系,时间-耗散率不确定关系已经被确立”进行报道;

3)提出了可以同时利用多个耗散制备量子纠缠的理论;给出了一步实现多体里德堡反阻塞的严格条件;提出基于一阶动力学的快速分步里德堡反阻塞机制并被实验验证;提出了并行路径几何量子计算概念。

以上研究成果主要以科研项目与论文发表形式体现,具体列于下:

一、主持科研项目

国家自然科学基金项目3项:

1)国家自然科学基金面上项目:基于非绝热非循环过程和优化控制的里德堡几何量子计算研究(批准号:12274376),55万;

2)国家自然科学基金青年项目:里德堡原子系统中的新物理及其在量子信息中的应用(批准号:11804308),27万;

3)国家自然科学基金理论物理专项:在腔QED系统中利用耗散过程实现量子纠缠态(批准号:11747096),5万。

省部及其它基金资助项目5项:

1)河南省自然科学优青基金项目:囚禁体系几何量子计算研究(批准号:232300421075),25万;

2)河南省重大科技专项子课题:超导量子芯片设计与制备关键技术研究(批准号:221100210400),150万;

3)博士后科学基金特别资助项目:里德堡相互作用诱导的新物理及其在量子信息中的应用(批准号:2018T110735),15万;

4)博士后科学基金面上项目:新型里德伯反阻塞机制及其在量子信息中的应用(批准号:2017M612411),5万;

5)河南省自然科学基金面上项目:利用含时调控技术实现高性能里德堡量子逻辑门(批准号:202300410481),10万;

6)河南省教育厅项目:基于里德堡反阻塞机制的量子信息处理理论研究(批准号:18A140009),5万。

二、代表性论文发表

至今在PRL, PR Applied, PR Research等权威物理类期刊发表SCI收录论文110余篇。其中,Phys. Rev.系列41篇,多篇论文被PRL、EPL、CPB和CPL选为高亮论文,ESI高被引论文1篇。论文被引1700余次,H-index为22。近年来主要代表性论文如下:

[1]L.-L. Yan, J.-W. Zhang, M.-R. Yun, J.-C. Li, G.-Y. Ding, J.-F. Wei, J.-T. Bu, B. Wang, L. Chen, S.-L. Su*, F. Zhou*, Y. Jia, E.-J. Liang, and M. Feng*, Experimental Verification of Dissipation-Time Uncertainty Relation. Phys. Rev. Lett. 128, 050603 (2022).[编辑推荐、物理特色]

[2]J. W. Zhang, L.-L. Yan, J. C. Li, G. Y. Ding, J. T. Bu, L. Chen, S.-L. Su*, F. Zhou *, and M. Feng*, Single-Atom Verification of the Noise-Resilient and Fast Characteristics of Universal Nonadiabatic Noncyclic Geometric Quantum Gates. Phys. Rev. Lett. 127, 030502 (2021).

[3]Y. Zhang, Q.-L. Wu, S.-L. Su, Q. Lou, C.-X Shan, and K. Mølmer, Cavity Quantum Electrodynamics Effects with Nitrogen-Vacancy Center Spins Coupled to Room Temperature Microwave Resonators. Phys. Rev. Lett. 128, 253601 (2022).

[4]Bao-Jie Liu, Lei-Lei Yan, Y Zhang, M-H Yung, Shi-Lei Su*, and Chong Xin Shan, Decoherence-suppressed nonadiabatic holonomic quantum computation. Phys. Rev. Research 5, 013059 (2023).提出抑制退相干的和乐量子计算,并以金刚石NV色心量子系统为例进行理论检验。

[5]S.-L. Su , Li-Na Sun, B.-J. Liu, L.-L. Yan, M.-H. Yung, W. Li, and M. Feng, Rabi- and Blockade-Error-Resilient All-Geometric Rydberg Quantum Gates. Phys. Rev. Applied 19, 044007 (2023).

[6]X.-Y. Zhu, B.-L. Fang*, Y.-H. Li, F.-Q. Guo, E.-J. Liang*, L.-L. Yan*, and S.-L. Su*, Simple construction of Rydberg quantum cloning machines via nonadiabatic geometric quantum operations. Phys. Rev. A 106, 052419 (2022).

[7]Bing-Bing Liu, Zheng Shan*, M.-R. Yun, D.-Y. Wang, B.-J. Liu, L.-L. Yan*, M. Feng, and S.-L. Su*, Robust three-qubit search algorithm in Rydberg atoms via geometric control. Phys. Rev. A 106, 052610 (2022).

[8]Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan*, M. Feng, and Shi-Lei Su*, Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms. Chin. Phys. Lett. 39 (9): 090301 (2022). [编辑推荐]本科生一作

[9]Jia-Wei Zhang, Jian-Qi Zhang, Ge-Yi Ding, Jia-Chong Li, Jin-Tao Bu, Bin Wang, Lei-Lei Yan, Shi-Lei Su, Liang Chen, Franco Nori, Sahin Ozdemir, Fei Zhou, Hui Jing, and Mang Feng*, Dynamical control of quantum heat engines using exceptional points. Nat. Comm. 13, 6225 (2022).

[10]Dongmin Yu, Han Wang, Jin-ming Liu, Shi-Lei Su*, Jing Qian*, and Weiping Zhang, Multiqubit Toffoli gates and optimal geometry with Rydberg atoms. Phys. Rev. Applied 18, 034072 (2022).

[11]J.-F. Wei, Fu-Qiang Guo, D.-Y. Wang, Y. Jia, L.-L, Yan*, M. Feng*, and S.-L. Su*, Fast multiqubit Rydberg geometric fan-out gates with optimal control technology. Phys. Rev. A 105, 042404 (2022).

[12]Li-Na Sun, F.-Q. Guo, Zheng Shan, M. Feng, L.-L. Yan*, and Shi-Lei Su*, One-step implementation of Rydberg nonadiabatic noncyclic geometric quantum computation in decoherence-free subspaces. Phys. Rev. A 105, 062602 (2022).

[13]Lv-Yun Wang, Fu-Qiang Guo, S.-L. Su*, Chong-Xin Shan*, M. Feng, E.-J. Liang, and L.-L. Yan*, Rapid ground-state cooling of a solid-state nanoparticle assisted by a magnetic-field gradient. Phys. Rev. A 105, 053124 (2022).

[14]L. Chen, X-M Xiu, L. Dong, N.-N. Liu, C.-P. Shen, S. Zhang, S. Chen*, and S.-L. Su, Direct conversion of Greenberger-Horne-Zeilinger state to Knill-Laflflamme-Milburn state in Decoherence-Free Subspace. Opt. Lett. 47, 2262 (2022).

[15]M-R Yun, Fu-Qiang Guo, L.-L, Yan*, E. Liang, Y. Zhang, S.-L. Su*, C.-X Shan, and Y. Jia*, Parallel-path implementation of nonadiabatic geometric quantum gates in a decoherence-free subspace with nitrogen-vacancy centers. Phys. Rev. A 105, 012611 (2022).

[16]Q. He, F. Badshah, Y. Song, L. Wang, Erjun Liang, and S.-L. Su, Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system. Phys. Rev. A 105, 013503 (2022).

[17]Jian-Qi Zhang, Jing-Xin Liu, Hui-Lai Zhang, Zhi-Rui Gong, Shuo Zhang, Lei-Lei Yan, Shi-Lei Su*, Hui Jing*, and Mang Feng*, Topological optomechanical amplifier in synthetic PT-symmetry. Nanophotonics 11, 1149 (2022).

[18]Y. He, J.-X. Liu, F.-Q. Guo, L.-L. Yan, R.-H. Luo, E. Liang, S.-L. Su*, and M. Feng, Multiple-qubit Rydberg quantum logic gate via dressed-state scheme. Opt. Comm. 505, 127500 (2022).本科生一作

[19]Jin-Lei Wu, Shuai Tang, Yan Wang, Xiao-Sai Wang, Jin-Xuan Han, Cheng Lv, Jie Song*, Shi-Lei Su*, Yan Xia, and Yong-Yuan Jiang*, Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Sci. China Phys. Mech. Astron. 65, 220311 (2022).

[20]Zhao Jin, Wei-Jiang Gong, Ai-Dong Zhu, Shou Zhang, Yang Qi, and Shi-Lei Su*, Dissipative preparation of qutrit entanglement via periodically modulated Rydberg double antiblockade. Opt. Exp. 29 10117 (2021).

[21]S.-L. Su and W. Li, Dipole–dipole–interaction–driven antiblockade of two Rydberg atoms. Phys. Rev. A, 104, 033716 (2021).

[22]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Yongyuan Jiang, Jie Song*, Yan Xia, Shi-Lei Su*, and Weibin Li*, Systematic-error-tolerant multiqubit holonomic entangling gates. Phys. Rev. Applied 16, 064031 (2021).

[23]Li-Na Sun, L.-L. Yan*, S.-L. Su*, and Y. Jia, One-step implementation of time-optimal-control three-qubit nonadiabatic holonomic controlled gates in Rydberg atoms. Phys. Rev. Applied 16, 064040 (2021).

[24]Yuan-Sheng Wang, Bao-Jie Liu, Shi-Lei Su, and Man-Hong Yung*, Error-resilient Floquet geometric quantum computation. Phys. Rev. Research 3, 033010 (2021).

[25]Meng Li, Fu-Qiang Guo, Z. Jin, L.-L. Yan*, Erjun Liang*, and Shi-Lei Su*, Multiple-qubit CkU quantum gate of Rydberg atoms via shortcut-to-adiabaticity and optimized geometric quantum operation. Phys. Rev. A 103 062607 (2021).

[26]Ri-Hua Zheng, Yang Xiao, S.-L. Su*, Ye-Hong Chen, Zhi-Cheng Shi, Jie Song, Yan Xia*, and Shi-Biao Zheng, Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping. Phys. Rev. A 103, 052402 (2021).

[27]M. Yun, F.-Q. Guo, M. Li, L.-L. Yan*, M. Feng*, Y.-X. Li*, and S.-L. Su, Distributed geometric quantum computation based on the optimized-control-technique in cavity-atom system via exchanging virtual photons. Opt. Exp. 29(6), 8737-8750 (2021).

[28]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su et al., Resilient quantum gates on periodically driven Rydberg atoms. Phys. Rev. A 103, 012601 (2021).

[29]F.-Q. Guo, J.-L. Wu, X.-Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L.-L. Yan*, M. Feng*, and S.-L. Su*, Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations. Phys. Rev. A 102, 062410 (2020).

[30]Jin-Lei Wu, Yan Wang, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song, Discrimination of enantiomers through quantum interference and quantum Zeno effect. Opt. Exp. 28 33475 (2020).

[31]Ri-Hua Zheng, Yi-Hao Kang, S.-L. Su*, J. Song, and Y. Xia*, Robust and high-fidelity nondestructive Rydberg parity meter, Phys. Rev. A 102, 012609 (2020).

[32]C. Y. Guo, L.-L. Yan, S. Zhang, S.-L. Su*, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms. Phys. Rev. A 102, 042607 (2020).本科生一作

[33]B. J. Liu, S.-L. Su*, and M. H. Yung, Nonadiabatic Noncyclic Geometric Quantum Computation in Rydberg atoms. Phys. Rev. Research 2, 043130 (2020).

[34]Zhichao Liu, Liang Chen*, Ji Li , Hang Zhang, Chengbin Li, Fei Zhou, S.-L. Su, Leilei Yan*, and Mang Feng*, Phys. Rev. A 102, 033106 (2020).

[35]S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications. EPL, 131 53001 (2020).受邀Perspective论文

[36]J. W. Zhang, K. Rehan, M. Li, J. C. Li, L. Chen, S.-L. Su, L.-L. Yan, F. Zhou, and M. Feng, Single-atom verification of the information-theoretical bound of irreversibility at the quantum level. Phys. Rev. Research 2, 033082 (2020).

[37]Rui Li, Dongmin Yu, S.-L. Su*, and Jing Qian*, Periodically driven facilitated high-efficiency dissipative entanglement with Rydberg atoms. Phys. Rev. A 101 042328 (2020).

[38]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Cong Wang, S.-L. Su, Yan Xia, Yongyuan Jiang, and Jie Song, Two-Path Interference for Enantiomer-Selective State Transfer of Chiral Molecules. Phys. Rev. Applied 13, 044021 (2020).

[39]Jin-Lei Wu, S.-L. Su, Y. Wang, J. Song et al., Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field. Opt. Lett. 45 1200 (2020).

[40]Jing-Xin Liu, Jun-Yao Ye, Lei-Lei Yan, S.-L. Su*, and M. Feng*, Distributed quantum information processing via single atom driving. J. Phys. B 53 035503 (2020).本科生一作

[41]S.-L. Su et al., Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101 012347 (2020). 2021年度ESI高被引

[42]Zhao Jin, S.-L. Su*, and Shou Zhang, Preparation of steady entangled state of two NV centers via simultaneously utilizing two dissipative factors. Phys. Rev. A 100 052332 (2019).

[43]Jin-Lei Wu, Yan Wang, Jie Song, Yan Xia, S.-L. Su, and Yong-Yuan Jiang, Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths. Phys. Rev. A 100, 043413 (2019).

[44]L.-L. Yan, S.-L. Su, and M. Feng, Analytical investigation of one-dimensional Doppler cooling of trapped ions with Lambda-type configuration. Phys. Rev. A 100, 033418 (2019).

[45]J. L. Wu and S. L. Su*, Universal speeded-up adiabatic geometric quantum computation in three-level systems via counterdiabatic driving. J. Phys. A 52, 335301 (2019). JPA 2019-2022前1%论文

[46]C. P. Shen, J. L. Wu, S. L. Su*, and E. J. Liang, Construction of robust Rydberg controlled-phase gates. Opt. Lett. 44 2036 (2019).

[47]L. L. Yan, S. L. Su, Q. Z. Hou, W. L. Yang*, and M. Feng, Macroscopically distinct superposition in a spin ensemble coupled to superconducting flux-qubits. Opt. Exp. 27 377 (2019).

[48]S.-L. Su et al., One-step construction of the multiple-qubit Rydberg controlled-PHASE gate. Phys. Rev. A 98, 032306 (2018).

[49]H. Z. Shen, S.-L. Su et al., Non-Markovian quantum Brownian motion in one dimension in electric fields. Phys. Rev. A 97, 042121 (2018).

[50]S.-L. Su et al., Applications of the modified Rydberg antiblockade regime with simultaneous driving. Phys. Rev. A 96 042335 (2017).

[51]S.-L. Su et al., Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95 022319 (2017).

[52]H.Z. Shen, D. X. Li, S.-L. Su et al., Exact non-Markovian dynamics of qubits coupled to two interacting environments. Phys. Rev. A 96 033805 (2017).

[53]Z. Jin, S.-L. Su et al., Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving. Opt. Exp. 25, 88 (2017).

[54]S.-L. Su et al., One-step implementation of Rydberg-Rydberg interaction gate. Phys. Rev. A 93 012306 (2016).

[55]S.-L. Su et al., Simplified scheme for entanglement preparation with Rydberg pumping via dissipation. Phys. Rev. A 92 022328 (2015).

[56]S.-L. Su et al., Scheme for entanglement generation in an atom-cavity system via dissipation. Phys. Rev. A 90 054302 (2014).

[57]S.-L. Su et al., Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay. Sci. Rep. 4 7566 (2014).

[58]C. Song, S.-L.Su et al., Generation of tree-type three-dimensional entangled states via adiabatic passage. Phys. Rev. A 93, 062321 (2016).

[59]Y. Liang, Q.-C Wu, S.-L Su et al., Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91 032304 (2015).

[60]Y. Liang, S.-L. Su et al., Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Opt. Express 23, 5064 (2015).

王东阳,直聘副研究员,硕士生导师

电子邮箱:dywang@zzu.edu.cn

基本信息

王东阳,博士,1992年11月生,河南原阳人。郑州大学物理学院光电信息科学研究所直聘副研究员,硕士生导师。

研究方向

主要从事量子光学与量子信息、腔光力学、量子调控等方向的研究。提出利用辅助干涉打破可分辨边带极限实现机械强压缩的方案,提出利用频率调制抑制斯托克斯边带打破光力反作用极限的边带冷却,提出利用压缩光驱动打破时间反演对称性制备非互易光子阻塞,提出在弱光力耦合情况下实现强光子阻塞的一系列方案。目前已发表SCI论文50余篇,主持国家自然科学基金两项,博士后基金一项。

教育与工作简历

2021.09-至今,郑州大学物理学院,直聘副研究员

2017.09-2021.06,哈尔滨工业大学,物理学,博士

2014.09-2017.06,延边大学,理论物理,硕士

2010.09-2014.06,延边大学,物理学,学士

代表性论文

[1]DY Wang, LL Yan, SL Su, CH Bai, HF Wang, E Liang, Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator, Optics Express 31 (14), 22343-22357 (2023).

[2]R Hou, W Zhang,DY Wang, SL Su, X Han, HF Wang, S Zhang, Conventional photon blockade in the dispersive limit for Tavis-Cummings model, Optics Express 31 (15), 24939-2495 (2023).

[3]CM Zheng, W Zhang,DY Wang, X Han, HF Wang, Simultaneously enhanced photon blockades in two microwave cavities via driving a giant atom, New Journal of Physics 25 (4), 043030 (2023).

[4]JF Wei, FQ Guo,DY Wang, Y Jia, LL Yan, M Feng, SL Su, Fast multiqubit Rydberg geometric fan-out gates with optimal control technology, Physical Review A 105 (4), 042404 (2022).

[5]TQ Zhang,DY Wang, CH Bai, S Zhang, HF Wang, Dissipative Generation of Two‐Mode Mechanical Squeezing via Frequency Modulation, Advanced Quantum Technologies 5 (2), 2100113 (2021).

[6]YN Zhao, T Wang,DY Wang, X Han, S Zhang, HF Wang, Optical Amplification and Fast-Slow Light in a Three-Mode Cavity Optomechanical System without Rotating Wave Approximation, Photonics 8 (9), 384 (2021).

[7]T Wang, CH Bai,DY Wang, S Liu, S Zhang, HF Wang, Optomechanically induced Faraday and splitting effects in a double-cavity optomechanical system, Physical Review A 104 (1), 013721 (2021).

[8]CH Bai,DY Wang, S Zhang, S Liu, HF Wang, Generation of Strong Mechanical–Mechanical Entanglement by Pump Modulation, Advanced Quantum Technologies 4 (5), 2000149 (2021).

[9]CH Bai,DY Wang, S Zhang, S Liu, HF Wang, Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation, Physical Review A 103 (3), 033508 (2021).

[10]DY Wang, CH Bai, Y Xing, S Liu, S Zhang, HF Wang, Enhanced photon blockade via driving a trapped -type atom in a hybrid optomechanical system, Physical Review A 102 (4), 043705 (2020).

[11]DY Wang, CH Bai, S Liu, S Zhang, HF Wang, Dissipative bosonic squeezing via frequency modulation and its application in optomechanics, Optics Express 28 (20), 28942-28953 (2020).

[12]DY Wang, CH Bai, S Liu, S Zhang, HF Wang, Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling, New Journal of Physics 22 (9), 093006 (2020).

[13]CH Bai,DY Wang, S Zhang, S Liu, HF Wang, Strong mechanical squeezing in a standard optomechanical system by pump modulation, Physical Review A 101 (5), 053836 (2020).

[14]DY Wang, CH Bai, X Han, S Liu, S Zhang, HF Wang, Enhanced photon blockade in an optomechanical system with parametric amplification, Optics letters 45 (9), 2604-2607 (2020).

[15]X Han,DY Wang, CH Bai, WX Cui, S Zhang, HF Wang, Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation, Physical Review A 100 (3), 033812 (2019).

[16]DY Wang, CH Bai, S Liu, S Zhang, HF Wang, Distinguishing photon blockade in a -symmetric optomechanical system, Physical Review A 99 (4), 043818 (2019).

[17]DY Wang, CH Bai, S Liu, S Zhang, HF Wang, Manipulation of nanomechanical resonator via shaking optical frequency, Journal of Physics B: Atomic, Molecular and Optical Physics 52 (4), 045502 (2019).

[18]DY Wang, CH Bai, S Liu, S Zhang, HF Wang, Optomechanical cooling beyond the quantum backaction limit with frequency modulation, Physical Review A 98 (2), 023816 (2018).

[19]Y Xing, L Qi, J Cao,DY Wang, CH Bai, HF Wang, AD Zhu, S Zhang, Spontaneous -symmetry breaking in non-Hermitian coupled-cavity array, Physical Review A 96 (4), 043810 (2017).

[20]DY Wang, CH Bai, HF Wang, AD Zhu, S Zhang, Steady-state mechanical squeezing in a double-cavity optomechanical system, Scientific reports 6 (1), 1-10 (2016).

[21]C Song, SL Su, JL Wu,DY Wang, X Ji, S Zhang, Generation of tree-type three-dimensional entangled states via adiabatic passage, Physical Review A 93 (6), 062321 (2016).

[22]DY Wang, CH Bai, HF Wang, AD Zhu, S Zhang, Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity, Scientific reports 6 (1), 1-8 (2016).

[23]DY Wang, JJ Wen, CH Bai, S Hu, WX Cui, HF Wang, AD Zhu, S Zhang, Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers, Annals of Physics 360, 228-236 (2015).

徐鹏,直聘研究员

电子邮箱:physicalxupeng@zzu.edu.cn

基本信息

徐鹏,博士,1992年6月生,郑州大学物理学院光电信息科学研究所直聘研究员。

教育与工作简历

2022.06-至今,郑州大学物理学院,直聘研究员

2019.07-2022.03,清华大学高等研究院,博士后

2014.09-2019.06,武汉大学物理学院,博士

2010.09-2014.06,宁波大学,学士

研究方向及成果

主要从事量子模拟、量子调控、精密测量,拓扑物态,人工规范场等。提出利用多能级振荡方法快速制备多体纠缠态、提出利用冷原子体系模拟非阿贝尔动力学规范场、提出利用一维自旋链实现边缘态离散时间晶体、推广周期驱动拓扑不变量、推广参数共振模型等相关工作,发表SCI论文10余篇。主持国家青年科学基金一项。

代表性工作

[1]Peng Xu, and Tian-Shu Deng. Topologically protected boundary discrete time crystal for a solvable model. Phys. Rev. B 107, 104301 (2023).

[2]Peng Xu, Wei Zheng, and Hui Zhai, Topological micromotion of Floquet quantum systems, Phys. Rev. B 105, 045139 (2022).

[3]Peng Xu, and Wenxian Zhang, Generalized parametric resonance in a spin-1 Bose-Einstein condensate, Phys. Rev. A 104, 023324 (2021).

[4]Peng Xu, Tian-Shu Deng, Wei Zheng, and Hui Zhai, Density-dependent spin-orbit coupling in degenerate quantum gases, Phys. Rev. A 103, L061302 (2021).

[5]Peng Xu, Su Yi, and Wenxian Zhang, Efficient Generation of Many-Body Entangled States by Multilevel Oscillations, Phys. Rev. Lett. 123, 073001 (2019).

吴金雷,特聘副研究员

电子邮箱:jlwu517@zzu.edu.cn

基本信息

吴金雷,2022年4月博士毕业于哈尔滨工业大学物理学院。2022.04-2023.02任职于哈尔滨工业大学(威海)理学院光电科学系,讲师。2023年3月加入郑州大学物理学院,特聘副研究员。主要研究兴趣为原子分子中的快速绝热演化、里德堡原子量子计算等,一作或通讯发表SCI论文30余篇,包括Phys. Rev. A,Phys. Rev. B, Phys. Rev. Appl.,Photonics Research, SCIENCE CHINA-Physics, Mechanics & Astronomy,Opt. Lett., APL等。

研究兴趣

1)里德堡原子系统中的量子计算

2)基于冷、热原子的量子精密测量

3)手性分子的量子光学分辨

4)量子绝热和绝热捷径的理论及应用

5)合成维度拓扑量子模拟和量子信息处理

6)基于量子技术的声、光超构材料

代表性论文

至今在Photonics Research、SCIENCE CHINA-Physics, Mechanics & Astronomy、PR系列、Opt. Lett.、APL等权威物理类期刊发表SCI收录论文60余篇。论文被引700余次,H-index为17。五年内发表论文如下:

[1]Wang Yan, Zhang Hui-Lai,Wu Jin-Lei, Song Jie, Yang Kun, Qin Wei, Jing Hui*, Kuang Le-Man*, Quantum parametric amplification of phonon-mediated magnon-spin interaction.Sci. China Phys. Mech. Astron. (2023).

[2]Xiaosai Wang,Jinlei Wu, Bin Ren, Jiabao Yao, Shuai Tang, Cheng Lü, and Yongyuan Jiang*, High-performance polarization-controlled perfect optical vortex generation via all-dielectric metasurfaces in the visible region.Phys. Scr. 98, 085931 (2023).

[3]Shuai Tang,Jin-Lei Wu*, Cheng Lü, Jiabao Yao, Yanbo Pei, and Yongyuan Jiang*, Unidirectional beam splitting in acoustic metamaterial governed by double fractional stimulated Raman adiabatic passage.Appl. Phys. Lett. 122, 212201 (2023).

[4]Jia-Ning Zhang, Jin-Xuan Han,Jin-Lei Wu*, Jie Song, and Yong-Yuan Jiang*, Robust beam splitter with fast quantum state transfer through a topological interface.Frontiers of Physics 18, 51303 (2023).

[5]Cheng Lü, Shuai Tang*,Jin-Lei Wu, and Yongyuan Jiang*, Low-frequency acoustic absorption realized by ultrasparse coiling-up metasurfaces.Results in Physics 49, 106488 (2023).

[6]Shuai Tang,Jin-Lei Wu*, Cheng Lü, Jia-Bao Yao, Xiaosai Wang, Jie Song, and Yongyuan Jiang*, One-way acoustic beam splitting in spatial four-waveguide couplers designed by adiabatic passage.New J. Phys.25, 033032 (2023).

[7]Xiaosai Wang,Jinlei Wu*, Ruoxing Wang, Li Li, and Yongyuan Jiang*, Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface.Appl. Sci.-Basel13, 2528 (2023).

[8]Cheng Lü, Shuai Tang,Jin-Lei Wu, Yanbo Pei*, and Yongyuan Jiang*, Achromatic transmitted acoustic lens arrayed by cascaded Helmholtz resonators.Appl. Phys. Express 16, 014004 (2023).

[9]Xiaosai Wang, Ying Cui, Bin Ren, Shuai Tang,Jinlei Wu*, and Yongyuan Jiang*, Metalens for generating multi-channel polarization-wavelength multiplexing metasurface holograms.Opt. Express 30, 47856 (2022).

[10]Jin-Lei Wu*, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song*, Fast and Robust Multiqubit Gates on Rydberg Atoms by Periodic Pulse Engineering.Adv. Quantum Technol. 2200042 (2022).

[11]Jin-Xuan Han,Jin-Lei Wu*, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, and Jie Song*, Fast topological pumping for the generation of large-scale Greenberger-Horne-Zeilinger states in a superconducting circuit.Front. Phys. 17, 62504 (2022).

[12]Qianyu Zhu, Cheng Lü,Jin-Lei Wu*, and Yan Li*, Gaussian soft control for controlled-Z gate on superconducting qubits with unilateral external driving.Laser Phys. Lett. 19, 095206 (2022).

[13]Shuai Tang,Jin-Lei Wu*, Cheng Lü, Jie Song, and Yongyuan Jiang*, Functional Acoustic Metamaterial Using Shortcut to Adiabatic Passage in Acoustic Waveguide Couplers.Phys. Rev. Appl. 18, 014038 (2022).

[14]Bin Ren, Yuxin Feng, Shuai Tang,Jin-Lei Wu, Bingyi Liu, Jie Song, and Yongyuan Jiang*, Ultra-thin 2-bit anisotropic Huygens coding metasurface for terahertz wave manipulation.Opt. Express 30, 16229 (2022).

[15]Shuai Tang, Cheng Lü,Jin-Lei Wu*, Jie Song, and Yongyuan Jiang*, Wavelength-selected bifunctional beam shaping for transmitted acoustic waves via coding metasurface.Appl. Acoust. 194, 108786 (2022).

[16]Shuai Tang,Jin-Lei Wu*, Cheng Lü, Xiaosai Wang, Jie Song, and Yongyuan Jiang*, Acoustic wavelength-selected metamaterials designed by reversed fractional stimulated Raman adiabatic passage.Phys. Rev. B 105, 104107 (2022).

[17]Jin-Xuan Han,Jin-Lei Wu*, Yan Wang, Yan Xia, Yong-Yuan Jiang, and Jie Song*, Tripartite high-dimensional magnon-photon entanglement in phases with broken PT-symmetry of a non-Hermitian hybrid system.Phys. Rev. B 105, 064431 (2022).

[18]Yan Wang,Jin-Lei Wu, Jin-Xuan Han, Yan Xia, Yong-Yuan Jiang, and Jie Song*, Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification.Phys. Rev. Appl. 17, 024009 (2022).

[19]JinLei Wu, Shuai Tang, Yan Wang, XiaoSai Wang, JinXuan Han, Cheng Lü, Jie Song, ShiLei Su, Yan Xia, and Yongyuan Jiang, Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations.Sci. China Phys. Mech. Astron.65, 220311 (2022).

[20]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Yongyuan Jiang, Jie Song*, Yan Xia, Shi-Lei Su*, and Weibin Li*, Systematic-Error-Tolerant Multiqubit Holonomic Entangling Gates.Phys. Rev. Appl. 16, 064031 (2021).

[21]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song*. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates.Front. Phys. 17, 22501 (2022).

[22]Wei Niu,Jin-Lei Wu, Pan Wang, and Xin Ji*, Error-Insensitive 3D Entanglement Gate with Optimal Control of Geometric Evolution,Ann. Phys-Berlin 533, 2100145 (2021).

[23]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Yu-Kun Feng, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song*, One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness.Photo. Res. 9, 814 (2021).

[24]Yan Wang,Jin-Lei Wu, Yu-Kun Feng, Jin-Xuan Han, Yan Xia, Yong-Yuan Jiang, and Jie Song*, Optimal Control for Robust Photon State Transfer in Optomechanical Systems.Ann. Phys-Berlin 533, 2000608 (2021).

[25]Jin-Xuan Han,Jin-Lei Wu*, Yan Wang, Yan Xia, Yong-Yuan Jiang, and Jie Song*, Large-scale Greenberger-Horne-Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain.Phys. Rev. A 103, 032402 (2021).

[26]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song, Resilient quantum gates on periodically driven Rydberg atoms.Phys. Rev. A 103, 012601 (2021).

[27]F.-Q. Guo,J.-L. Wu, X.-Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L.-L. Yan*, M. Feng*, and S.-L. Su*, Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations.Phys. Rev. A 102, 062410 (2020).

[28]Yan Wang,Jin-Lei Wu, Jin-Xuan Han, Yong-Yuan Jiang, Yan Xia, Jie Song*, Resilient Mølmer-Sørensen gate with cavity QED.Phys. Lett. A 388, 127033 (2021).

[29]Jin-Lei Wu, Yan Wang, Shi-Lei Su, Yan Xia, Yongyuan Jiang*, and Jie Song*, Discrimination of enantiomers through quantum interference and quantum Zeno effect.Opt. Express 28, 33475 (2020).

[30]Shi-Lei Su*, Fu-Qiang Guo,Jin-Lei Wu, Zhen Jin, Xiao-Qiang Shao, and Shou Zhang, Rydberg antiblockade regimes: Dynamics and applications.EPL, 131, 53001 (2020).

[31]Yan Wang,Jin-Lei Wu, Jin-Xuan Han, Yong-Yuan Jiang, Yan Xia, and Jie Song*, Noise-resistant phase gates with amplitude modulation.Phys. Rev. A, 102, 032601 (2020).

[32]Yan Wang,Jin-Lei Wu, Jie Song*, Zi-Jing Zhang, Yong-Yuan Jiang, and Yan Xia, Enhancing atom-field interaction in the reduced multiphoton Tavis-Cummings model.Phys. Rev. A, 101, 053826 (2020).

[33]Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Cong Wang, Shi-Lei Su, Yan Xia, Yongyuan Jiang*, and Jie Song*, Two-Path Interference for Enantiomer-Selective State Transfer of Chiral Molecules.Phys. Rev. Appl. 13, 044021 (2020).

[34]Cong Wang, Jin-Xuan Han,Jin-Lei Wu*, Yan Wang, Yongyuan Jiang, Yan Xia, and Jie Song*, Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance.Laser Phys. 30, 045201 (2020).

[35]Jin-Lei Wu, Shi-Lei Su, Yan Wang, Jie Song*, Yan Xia, and Yong-Yuan Jiang, Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field.Opt. Lett. 45, 1200 (2020).

[36]Jin-Xuan Han,Jin-Lei Wu*, Yan Wang, Yongyuan Jiang, Yan Xia, and Jie Song*, Multi-qubit phase gate on multiple resonators mediated by a superconducting bus.Opt. Express 28, 33475 (2020).

[37]Jin-Lei Wu, Jie Song*, Shi-Lei Su*, Resonant-interaction-induced Rydberg antiblockade and its applications.Phys. Lett. A 384, 126039 (2020).

[38]Guang-Qing Sun,Jin-Lei Wu, Wei Niu, Wan-Rang Yu, and Xin Ji*, Remote Implementation of a Fredkin Gate via Virtual Excitation of an Atom-Cavity-Fiber System.Ann. Phys-Berlin 532, 1900372 (2019).

[39]Jin-Lei Wu, Yan Wang, Jie Song*, Yan Xia, Shi-Lei Su, and Yong-Yuan Jiang, Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths.Phys. Rev. A 100, 043413 (2019).

[40]Jin-Xuan Han,Jin-Lei Wu*, Yan Wang, Yan Xia, Jie Song*, and Yong-Yuan Jiang. Constructing multi-target controlled phase gate in circuit QED and its applications.EPL 127, 50002 (2019).

[41]Yan Wang,Jin-Lei Wu, Jie Song*, Yong-Yuan Jiang, Zi-Jing Zhang, and Yan Xia, Squeezing-Enhanced Atom–Cavity Interaction in Coupled Cavities with High Dissipation Rates.Ann. Phys-Berlin 531, 1900220 (2019).

[42]J L Wuand S L Su*, Universal speeded-up adiabatic geometric quantum computation in three-level systems via counterdiabatic driving.J. Phys. A: Math. Theor. 52 335301 (2019).

[43]Jin-Lei Wuand Shi-Lei Su*, Auxiliary-qubit-driving–induced entanglement and logic gate.EPL, 126, 30001 (2019).

[44]Cai-Peng Shen,Jin-Lei Wu, Shi-Lei Su*, and Erjun Liang, Construction of robust Rydberg controlled-phase gates.Opt. Lett. 44, 2036 (2019).

行言,直聘副研究员

电子邮箱:yanhsing@163.com

 

基本信息

行言,博士,1993年7月生,郑州大学物理学院光电信息科学研究所直聘副研究员。

 

研究方向

1)拓扑物态

2)安德森局域化

教育与工作经历

2023.07-至今,郑州大学物理学院,直聘副研究员

2018.09-2023.06,哈尔滨工业大学,物理学,博士

2015.09-2018.06,延边大学,物理学,硕士

2011.09-2015.06,延边大学,物理学,学士

 

论文发表情况

[1]Yan Xing, Lu Qi, Xuedong Zhao, Zhe Lü, Shutian Liu, Shou Zhang,and Hong-Fu Wang, Quantum transport in a one-dimensional quasicrystal with mobility edges.Physical Review A, 105(3), 032443 (2022).

[2]Yan Xing, Xuedong Zhao, Zhe Lü, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Observing two-article Anderson localization in linear disordered photonic lattices.Optics Express, 29(24), 40428-40446 (2021).

[3]Yan Xing, Lu Qi, Xuedong Zhao, Zhe Lü, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Adiabatic pumping in a generalized Aubry-André model family with mobility edges.Annalen der Physik, 533(11), 2100270 (2021).

[4]Yan Xing, Lu Qi, Ji Cao, Dong-Yang Wang, Cheng-Hua Bai, Wen-Xue Cui, Hong-Fu Wang, Ai-Dong Zhu, and Shou Zhang, Controllable photonic and phononic edge localization via optomechanically induced Kitaev phase.Optics Express, 26(13), 16250-16264 (2018).

[5]Yan Xing, Lu Qi, Ji Cao, Dong-Yang Wang, Cheng-Hua Bai, Hong-Fu Wang, Ai-Dong Zhu, and Shou Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array.Physical Review A, 96(4), 043810 (2017). (PRA Kaleidoscope)

[6]Xuedong Zhao,Yan Xing, Ji Cao, Shutian Liu, Wen-Xue Cui, and Hong-Fu Wang, Engineering quantum diode in one-dimensional time-varying superconducting circuits.npj Quantum Information, 9(1), 59 (2023).

[7]Xuedong Zhao,Yan Xing, Lu Qi, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Real-potential-driven anti-PT-symmetry breaking in non-Hermitian Su-Schrieffer-Heeger model.New Journal of Physics, 23(7), 073043 (2021).

[8]Lu Qi,Yan Xing, Xuedong Zhao, Shutian Liu, Shou Zhang, Shi Hu, and Hong-Fu Wang, Topological beam splitter via defect-induced edge channel in the Rice-Mele model.Physical Review B, 103(8), 085129 (2021).

[9]Lu Qi,Yan Xing, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Topological phase induced by distinguishing parameter regimes in a cavity optomechanical system with multiple mechanical resonators.Physical Review A, 101(5), 052325 (2020).

[10]Wen-Xue Cui,Yan Xing, Lu Qi, Xue Han, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Quantum walks in periodically kicked circuit QED lattice.Optics Express, 28(9), 13532-13541 (2020).

[11]Lu Qi,Yan Xing, Guo-Li Wang, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Topological and nontopological edge states induced by qubit-assisted coupling potentials.Annalen der Physik, 532(7), 2000067 (2020).

[12]Shuai Fan,Yan Xing, Lu Qi, Hong-Fu Wang, and Shou Zhang, Defect-position-dependent PTsymmetry breaking in coupled Su-Schrieffer-Heeger chains.Laser Physics Letters, 16(12), 125203 (2019).

[13]Lu Qi,Yan Xing, Ji Cao, Xin-Xin Jiang, Cheng-Shou An, Ai-Dong Zhu, Shou Zhang, and Hong-Fu Wang, Simulation and detection of the topological properties of a modulated Rice-Mele model in a one-dimensional circuit-QED lattice.Science China-Physics Mechanics & Astronomy, 61(8), 080313 (2018).

[14]Ji Cao,Yan Xing, Lu Qi, Dong-Yang Wang, Cheng-Hua Bai, Ai-Dong Zhu, Shou Zhang, and Hong-Fu Wang, Simulating and studying the topological properties of generalized commensurate Aubry-André-Harper model with microresonator array.Laser Physics Letters, 15(1), 015211 (2018).

[15]Lu Qi,Yan Xing, Hong-Fu Wang, Ai-Dong Zhu, and Shou Zhang, Simulating Z2topological insulators via a one-dimensional cavity optomechanical cells array.Optics Express, 25(15), 17948-17959 (2017).

[16]Chao Chen, Lu Qi,Yan Xing, Wen-Xue Cui, Shou Zhang, and Hong-Fu Wang, General bounded corner states in two-dimensional off-diagonal Aubry-Andre-Harper model with flat bands.New Journal of Physics, 23(12), 123008 (2021).

[17]Lu Qi, Yu Yan,Yan Xing, Xuedong Zhao, Shutian Liu, Wen-Xue Cui, Xue Han, Shou Zhang, and Hong-Fu Wang, Topological router induced via long-range hopping in a Su-Schrieffer-Heeger chain.Physical Review Research, 3(2), 023037 (2021).

[18]Wen-Xue Cui, Lu Qi,Yan Xing, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Localized photonic states and dynamic process in nonreciprocal coupled Su-Schrieffer-Heeger chain.Optics Express, 28(24), 37026-37039 (2020).

[19]Dong-Yang Wang, Cheng-Hua Bai,Yan Xing, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Enhanced photon blockade via driving a trapped Lambda-type atom in a hybrid optomechanical system.Physical Review A, 102(4), 043705 (2020).

[20]Zhi-Xu Zhang, Rong Huang, Lu Qi,Yan Xing, Zhan-Jun Zhang, and Hong-Fu Wang, Topological phase transition and eigenstates localization in a generalized non-hermitian Su-Schrieffer-Heeger model.Annalen der Physik, 533(1), 2000272 (2020).

[21]Wen-Xue Cui, Lu Qi,Yan Xing, Shutian Liu, Shou Zhang, and Hong-Fu Wang, Topological and nontopological photonic states in two coupled circuit quantum electrodynamics chains.Laser Physics Letters, 17(5), 055206 (2020).

[22]Yu Yan, Lu Qi, Dong-Yang Wang,Yan Xing, Hong-Fu Wang, and Shou Zhang, Topological Phase Transition and Phase Diagrams in a Two-Leg Kitaev Ladder System.Annalen der Physik, 532(4), 1900479 (2020).

[23]Bian-Bian Liang, Shi Hu, Wen-Xue Cui, Cheng-Shou An,Yan Xing, Jing-Si Hu, Guo-Qing Sun, XinXin Jiang, and Hong-Fu Wang, Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by a quantum dot-microcavity coupled system.Laser Physics Letters, 11(11), 115202 (2014).

关闭