师资队伍

H

当前位置: 首页 -> 师资队伍 -> 全体教师 -> 按拼音排序 -> H -> 正文

胡泽军

作者: 来源: 阅读次数: 日期:2024-03-28


姓名:胡泽军

职务/职称:教授

研究领域:微分几何

邮箱:huzj@zzu.edu.cn


简要经历

河南省光山县人。1978.10—1982.7于江西大学数学专业读本科,获理学学士学位;1985.9—1988.7于郑州大学基础数学专业读硕士研究生,获理学硕士学位,随后毕业留校工作至今。其间:1993.9—1996.7年于四川大学基础数学专业读博士,获理学博士学位;1996.9—1998.7于杭州大学数学系做博士后;2002.1.10—2003.1.31获国家留学基金委基金项目赴柏林工业大学(TU Berlin)访问Udo Simon教授;2005.7.1-2006.1.31获DAAD(德国学术交流中心)奖学金和TU Berlin经费资助赴柏林工业大学访问并开展合作研究。先后五次访问柏林工业大学。此外,还先后访问过日本东北大学和佐贺大学,法国瓦朗西纳大学(Université de Valenciennes),比利时天主教鲁汶大学(KU Leuven)等。2005年5月至2019年9月间担任郑州大学数学系副主任(数学与统计学院副院长)。曾先后获河南省优秀中青年骨干教师(1998)、河南省跨世纪学术与技术带头人培养对象(1999)、河南省优秀教师(2004)、郑州大学首届“师德标兵”(2005)、郑州大学“三育人”先进个人(2005、2013、2017)等荣誉称号。2021年1月被河南省人力资源和社会保障厅认定为“河南省高层次(C类)人才。曾担任第十二届和第十三届“中国数学会”理事(2015-2023)、国际数学期刊“Journal of Geometry”编委(2014--)和“JP Journal of Geometry and Topology”编委(2018--)、美国“Mathematical Reviews”评论员(2006--)。


主要项目

主持国家自然科学基金面上项目:

1.“黎曼泛函及其相关的曲率与拓扑问题的研究”(2007.1-2009.12;项目批准号10671181)

2.“超曲面的几何与拓扑分类研究”(2011.1-2013.12;项目批准号11071225)

3.“典型黎曼流形与子流形的分类研究”(2014.1-2017.12;项目批准号11371330)

4.“黎曼流形与黎曼子流形的刚性与分类问题研究”(2018.1-2021.12;项目批准号11771404)

5.“黎曼流形及黎曼子流形的几何与分类研究”(2022.1-2025.12;项目批准号12171437)


奖励

1.独著论文“具常平均曲率和非负截面曲率的完备超曲面”获1996年河南省教委优秀科学论文壹等奖。

2.合著(1/2)论文“双曲空间H^2(-1)到H^3(-1)的等距浸入”获1999年河南省第六届自然科学优秀学术论文壹等奖。

3.(合著1/2)论文“S^3中常平均曲率紧致曲面的一个整体拼挤定理” 获1999年河南省第六届自然科学优秀学术论文贰等奖。

4.独著论文“Conformal deformations for prescribing scalar curvature on Riemannian manifolds with negative curvature”获2000年河南省教育厅优秀科学论文贰等奖,证书编号:豫教[2000] 00611号。

5.合著(1/2)论文“Submanifolds with constant Moebius scalar curvature in S^n(球面中具有常数Moebius数量曲率子流形)”获2004年河南省教育厅优秀科技论文壹等奖,证书编号:豫教[2004] 03617号。

6.合著(1/2)论文“球面中具平行Moebius第二基本形式超曲面的分类”获河南省教育厅优秀科技论文壹等奖,证书编号:豫教[2006] 01927号。

7.合著(1/2)论文“A new variational characterization of n-dimensional space forms (n维空间形式的一个新的变分特征)”获2006年河南省第九届自然科学优秀学术论文壹等奖。

8.合著(1/2)论文“Scalar curvature, Killing vector fields and harmonic one-forms on compact Riemannian manifolds (紧致的黎曼流形上的数量曲率,Killing向量场和1次调和形式)”获2006年河南省第九届自然科学优秀学术论文贰等奖。

9.合著(1/2)论文“Willmore Lagrangian spheres in the complex Euclidean space C^n(复欧氏空间C^n中的Willmore Lagrangian球面)”获2006年河南省第九届自然科学优秀学术论文贰等奖。

10.合著(1/2)论文“Classification of Moebius isoparametric hypersurfaces in the unit six-sphere”获2010年河南省教育厅优秀科技论文壹等奖,证书编号:豫教[2010] 01384号。

11.合著(1/4)论文“具有平行cubic形式的局部严格凸仿射超曲面(I)”获河南省首届自然科学学术奖-河南省自然科学优秀学术论文壹等奖,2011年9月。

12.合著(1/2)论文“Mobius isoparametric hypersurfaces with three distinct principal curvatures, II”获河南省第二届自然科学学术奖---河南省自然科学优秀学术论文贰等奖,2013年12月。

13.合著(1/3)论文“On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues”获河南省第二届自然科学学术奖---河南省自然科学优秀学术论文壹等奖,2013年12月。

14.合著(1/3)论文“On generalized m-quasi-Einstein manifolds with constant scalar curvature”获河南省第四届自然科学学术奖---河南省自然科学优秀学术论文壹等奖,2018年1月。

15.合著(2/2)论文“On product affine hyperspheres in R^{n+1}”获2021年度河南省教育厅科技成果奖优秀科技论文贰等奖,证书编号:豫教〔2021〕19806。

16.合著(1/2)论文“Submanifolds with parallel M\”obius second fundamental form in the unit sphere”获河南省第五届自然科学学术奖---河南省自然科学优秀学术论文叁等奖,2021年12月。

17.合著(1/2)论文“Submanifolds with parallel M\”obius second fundamental form in the unit sphere”获河南省教育厅“优秀科技论文奖”壹等奖,公布文号:教科技[2022]190号;证书编号:豫教[2022]22219,2022年6月。


论著

Global affine differential geometry of hypersurfaces(作者:An-Min Li, Udo Simon, Guosong Zhao and Zejun Hu), de Gruyter Expositions in Mathematics 11, 2ndrevised and extended edition, 367 pages. 2015年由德国De Gruyter出版社出版。


论文

1.Qian Zhao, Xiuxiu Cheng and Zejun Hu,On flat elliptic centroaffine Tchebychev hypersurfaces,Journal of Geometry and Physics, 198 (2024), Art. 105131, 15 pp.

2.Qianshun Cui and Zejun Hu,Nonexistence of non-Hopf Ricci-semisymmetric real hypersurfaces in CP^2 and CH^2,Canadian Mathematical Bulletin, 67 (2024), no. 1, 188-200.

3.Mingzhu Gao, Zejun Hu and Cheng Xing,A rigidity theorem for hypersur- faces of the odd-dimensional unit sphere S^{2n+1}(1),Colloquium Mathematicum, 174 (2023),no. 2,151-160.

4.Qianshun Cui and Zejun Hu,On 2-Hopf hypersurfaces in nonflat complex planes,Mediterranean Journal of Mathematics, 20 (2023), no. 6. Article324. 17 pp.

5.Zejun Hu, Bingxin Xie and Shujie Zhai,Submanifolds with semi-parallel Moebius second fundamental form in the unit sphere,The Journal of Geometric Analysis,33 (2023),no. 12. Article378, 44 pp.

6.Zejun Hu and Xi Zhang,Real hypersurfaces of nonflat complex space forms with weakly transversal Killing operators,Differential Geometry and Its Applications,91 (2023), Article102061, 9 pp.

7.Xi Zhang, Dong Gao, Zejun Hu and Zeke Yao,On Hopf hypersurfaces of S^2*S^2 and H^2*H^2,Journal of Geometry and Physics,194 (2023), Article104996, 14 pp.

8.Zejun Hu and Cheng Xing,Locally conformally flat affine hyperspheres with parallel Ricci tensor,Journal of Mathematical Analysis and Applications,528 (2023),no. 1, Article127596, 11 pp.

9.Xiuxiu Cheng and Zejun Hu,On $C$-totally real submanifolds of S^{2n+1}(1) with non-negative sectional curvature,Kodai Mathematical Journal, 46 (2023), no.2, 184-206.

10.Zejun Hu and Hai Li,On the existence of solutions to the Orlicz Aleksandrov problem,Geometriae Dedicata,217 (2023),no. 3,Article 57, 11 pp.

11.Zejun Hu and Hai Li,On the existence of solutions to the Orlicz-Minkowski problem for torsional rigidity,Archiv der Mathematik,120 (2023),no. 5,543-555.

12.Hai Li and Zejun Hu,On the polar Orlicz-Minkowski type problem for the general mixed p-capacity,Journal of Mathematical Analysis and Applications, 522 (2023),no. 1,Article126925, 18 pp.

13.Dong Gao, Zejun Hu, Hui Ma and Zeke Yao,On real hypersurfaces of S2*S2,Proceedings of the American Mathematical Society,150 (2022), no. 10, 4447- 4461.

14.Zejun Hu, Meng Li and Cheng Xing,OnC-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor,Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas,116 (2022), no. 4,Article163, 25 pp.

15.Zejun Hu and Hai Li,Inequalities on the(p,q)-mixed volume involvingLpcentroid bodies andLpintersection bodies,Filomat, 36 (2022), no.5, 1527-1538.

16.Xiuxiu Cheng, Zejun Hu and Cheng Xing,On centroaffine Tchebychev hypersurfaces with constant sectional curvature.Results in Mathematics, 77 (2022),no. 4,Article175, 29 pp.

17.Zeke Yao and Zejun Hu,On Hopf hypersurfaces of the homogeneous nearly KaehlerS3×S3, II.Manuscripta Mathematica,168 (2022), no. 3-4, 371–402.

18.Zejun Hu, Cece Li and Cheng Xing,On Lorentzian Einstein affine hyperspheres.Journal of Geometry and Physics,179 (2022),Article104587, 13 pp.

19.Zeke Yao, XiZhang and Zejun Hu,Hypersurfaces of the homogeneous nearly KaehlerS^3*S^3withP-invariant holomorphic distributions.The Journal of Geometric Analysis,32 (2022), no. 7,Article209, 16 pp.

20.Zeke Yao, Bangchao Yin and Zejun Hu,Non-existence of conformally flat real hypersurfaces in both the complex quadric and the complex hyperbolic quadric,Canadian Mathematical Bulletin,65 (2022), no. 1, 68-83.

21.Zejun Hu and Cheng Xing,New characterizations of the Whitney spheres and the contact Whitney sphere,Mediterranean Journal of Mathematics, 19 (2022), no. 2, Article 75, 14 pp.

22.Zejun Hu and Hai Li,On the Orlicz Minkowski problem for logarithmic capacity,Journal of Mathematical Analysis and Applications, 510 (2022),no. 1,Article126005, 16 pp.

23.Miroslava Antic, Zejun Hu, Marilena Moruz and Luc Vrancken,Surfaces of the nearly K\"ahler S^3*S^3 preserved by the almost product structure,Mathematische Nachrichten, 294 (2021), no.12.2286-2301.

24.Xiuxiu Cheng, Zejun Hu and Luc Vrancken,Every centroaffine Tchebychev hyperovaloid is ellipsoid,Pacific Journal of Mathematics, 315 (2021), no. 1, 27-44.

25.Zejun Hu, Zeke Yao and Xi Zhang,On Hopf hypersurfaces of the complex quadric with recurrent Ricci tensor,Journal of Geometry, 112 (2021), no.3, Article48, 19 pp.

26.Xiuxiu Cheng, Huili He and Zejun Hu,C-totally real submanifolds with constant sectional curvature in the Sasakian space forms,Results in Mathematics,76 (2021),no. 3,Article 144, 16pp.

27.Zejun Hu and Cheng Xing,A new centroaffine characterization of the ellipsoids,Proceedings of the American Mathematical Society, 149 (2021), no. 8, 3531-3540.

28.Xiuxiu Cheng, Zejun Hu, Marilena Moruz and Luc Vrancken,On product minimal Lagrangian submanifolds in complex space forms,The Journal of Geometric Analysis, 31 (2021),no. 2,1934-1964.

29.Zejun Hu and Jiabin Yin,New characterizations of real hypersurfaces with isometric Reeb flow in the complex quadric,Colloquium Mathematicum,164 (2021),no. 2,211-219.

30.Zejun Hu and Cheng Xing,New equiaffine characterizations of the ellipsoids related to an equiaffine integral inequality on hyperovaloids,Mathematical Inequalities & Applications,24 (2021), no. 2, 337-350.

31.Zejun Hu, Marilena Moruz, Luc Vrancken and Zeke Yao,On the nonexistence and rigidity for hypersurfaces of the homogeneous nearly K\"ahler S^3*S^3,Differential Geometry and Its Applications, 75 (2021), Article101717, 22pp.

32.Zejun Hu and Jiabin Yin,An optimal inequality related to characterizations of the contact Whitney spheres in Sasakian space forms,The Journal of Geometric Analysis, 30(2020),no. 4,3373-3397.

33.Xiuxiu Cheng, Zejun Hu, Marilena Moruz and Luc Vrancken,On product affine hyperspheres in R^{n+1},ScienceChinaMathematics, 63 (2020),no. 10,2055-2079.

34.Zejun Hu and Cheng Xing,On the Ricci curvature of $3$-submanifolds in the unit sphere,Archiv der Mathematik,115 (2020),no. 6,727-735.

35.Zejun Hu and ZekeYao,On Hopf hypersurfaces of the homogeneous nearly K\"ahler S^3*S^3,Annali di Mathematica Pura ed Applicata,199 (2020),no. 3,1147-1170.

36.Zejun Hu, ZekeYao and Jiabin Yin,On Ricci curvature of Lagrangian submanifolds in the homogeneous nearly K\"ahler S^6(1),Results in Mathematics, 75 (2020),no. 2,Article52, 7pp.

37.Zejun Hu, ZekeYao and Xi Zhang,Hypersurfaces of the homogeneous nearly K\"ahler S^6 and S^3*S^3 with anticommutative structure tensors,Bulletin of the Belgian Mathematical Society – Simon Stevin, 25 (2019),no.4,535-549.

38.Zejun Hu, Jiabin Yin and Bangchao Yin,Rigidity theorems of Lagrangian submanifolds in the homogeneous nearly K\"ahler S^6(1),Journal of Geometry and Physics,144 (2019), 199-208.

39.Zejun Hu and Jiabin Yin,Equivariant minimal immersions from S^3 into CP^3,Acta Mathematica Scientia, 39B(2019),no.4,1065-1080.

40.Xiuxiu Cheng, Zejun Hu and Zeke Yao,A rigidity theorem for centroaffine Tchebychev hyperovaloids,Colloquium Mathematicum, 157 (2019),no. 1,133-141.

41.Xiuxiu Cheng and Zejun Hu,Classification of locally strongly convex isotropic centroaffine hypersurfaces,Differential Geometry and Its Applications,65 (2019), 30-54.

42.Zejun Hu, Jiabin Yin and Zhenqi Li,Equivariant CR minimal immersions from S^3 into CP^n,Annals of Global Analysis and Geometry,54 (2018), no.1, 1-24.

43.Zejun Hu and Shujie Zhai,Submanifolds with parallel Moebius second fundamental form in the unit sphere,Results in Mathematics,73(2018),Article93, 46 pp.

44.Shujie Zhai, Xiuli Guo and Zejun Hu,Hypersurfaces in the unit sphere with parallel Moebius form and constant para-Blaschke eigenvalues,Turkish Journal of Mathematics,28 (2018),no. 3,1180-1192.

45.Xiuxiu Cheng and Zejun Hu,On the isolation phenomena of locally conformally flat manifolds with constant scalar curvature--Submanifolds versions,Journal of Mathematical Analysis and Applications,464 (2018), no.2, 1147-1157.

46.Zejun Hu, Dehe Li,On 3-dimensional homogeneous generalized $m$-quasi- Einstein manifolds,Kodai Mathematical Journal, 41 (2018),no. 1,42-51.

47.Zejun Hu, ZekeYao and Yinshan Zhang,On some hypersurfaces of the homogeneous nearly K\"ahler S^3*S^3,Mathematische Nachrichten, 291 (2018),no. 2-3,343-373.

48.Xiuxiu Cheng, Zejun Hu, An-Min Li and Haizhong Li,On the isolation phenomena of Einstein manifolds --- submanifolds versions,Proceedings of the American Mathematical Society, 146 (2018),no.4,1731-1740.

49.Xiuxiu Cheng and Zejun Hu,An optimal inequality on locally strongly convex centroaffine hypersurfaces,The Journal of Geometric Analysis,28 (2018),no. 1,643-655.

50.Xiuxiu Cheng, Zejun Hu and Marilena Moruz,Classification of locally strongly convex centroaffine hypersurfaces with parallel cubic form,Results in Mathematics,72 (2017),no. 1-2,419–469.

51.Zejun Hu and Yinshan Zhang,On isotropic Lagrangian submanifolds in the homogeneous nearly K\"ahler S^3*S^3,Science China Mathematics, 60 (2017),no. 4,671-684.

52.Zejun Hu, Haizhong Li and Luc Vrancken,On four-dimensional Einstein affine hyperspheres,Differential Geometry and Its Applications,50 (2017), 20-33.

53.Zejun Hu, Dehe Li and Shujie Zhai,On generalized m-quasi-Einstein manifolds with constant Ricci curvatures,Journal of Mathematical Analysis and Applications, 446(2017),no. 1,843-851.

54.Yinshan Zhang, Bart Dioos, Zejun Hu, Luc Vrancken and Xianfeng Wang,Lagrangian submanifolds in the 6-dimensional nearly K\"ahler manifolds with parallel second fundamental form,Journal of Geometry and Physics,108 (2016), 21-37.

55.Zejun Hu and Yinshan Zhang,Rigidity of the almost complex surfaces in the nearly K\"ahler S^3*S^3,Journal of Geometry and Physics,100(2016), 80-91.

56.Miroslava Antic, Zejun Hu, Cece Li and Vrancken Luc,Characterizations of the generalized Calabi composition of affine hyperspheres,Acta Mathematica Sinica, English Series,31 (2015),no.10,1531–1554.

57.Zejun Hu, Dehe Li and Jing Xu,On generalized m-quasi-Einstein manifolds with constant scalar curvature,Journal of Mathematical Analysis and Applications, 432(2015),no. 2,733-743.

58.Zejun Hu, Dongliang Lyu and Jing Wang,On rigidity phenomena of compact surfaces in homogeneous 3-manifolds,Proceedings of the American Mathematical Society, 143 (2015),no. 7,3097-3109.

59.Shujie Zhai, Zejun Hu and Changping Wang,On submanifolds with parallel Moebius second fundamental form in the unit sphere,International Journal of Mathematics, 25 (2014),no. 6, Article1450062,37pp.

60.Zejun Hu, Cece Li and Chuanjing Zhang,On quasi-umbilical locally strongly convex homogeneous affine hypersurfaces,Differential Geometry and Its Applications,33 (2014), 46-74.

61.Yawei Chu and Zejun Hu,Lower bounds estimates of the first eigenvalue for the f-Laplacian and their applications,The Quarterly Journal of Mathematics,64 (2013), 1023-1041.

62.Zejun Hu and Haifen Song,On Otsuki tori and their Willmore energy,Journal of Mathematical Analysis and Applications, 395 (2012), 465-472.

63.Zejun Hu, Haizhong Li and Luc Vrancken,Locally strongly convex affine hypersurfaces with parallel cubic form,Journal of Differential Geometry,87 (2011),no. 2,239–307.

64.Hu Zejun and Zhai Shujie,Moebius isoparametric hypersurfaces with three principal curvatures (II),Pacific Journal of Mathematics,249 (2011),no. 2,343-370.

65.Zejun Hu, Cece Li and Dong Zhang,A differential geometric characterization of the Cayley hypersurface,Proceedings of the American Mathematical Society,139 (2011),no. 10,3697-3706.

66.Zejun Hu and Cece Li,The classification of 3-dimensional Lorentzian affine hypersurfaces with parallel cubic form,Differential Geometry and Its Applications,29 (2011),no. 3,361-373.

67.Zejun Hu, Xingxiao Li and Shujie Zhai,On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues,Science China Mathematics,54(2011),no. 10,2171-2194.

68.Zejun Hu, Cece Li, Haizhong Li and Luc Vrancken,The classification of 4-dimensional non-degeneratehypersurfaces with parallel cubic form,Journal of Geometry and Physics,61(2011),no. 11,2035-2057.

69.Zejun Hu, Cece Li, Haizhong Li and Luc Vrancken,Lorentzian affine hypersurfaces with parallel cubic form,Results in Mathematics,59(2011),no. 3-4,577-620.

70.Zejun Hu, Seiki Nishikawa and Udo Simon,Critical metrics of the Schouten functionalJournal of Geometry, 98 (2010),no. 1-2,91–113.

71.Zejun Hu, Haizhong Li,Udo Simon and Luc Vrancken,On locally strongly convex affine hypersurfaces with parallel cubic form, Part I,Differential Geometry and Its Applications,27 (2009),188–205.

72.Zejun Hu and Xiaoli Tian,On Moebius form and Moebius isoparametric hypersurfaces,Acta Mathematica Sinica, English Series,25 (2009),no. 12, 2077–2092.

73.Zejun Hu andShujie Zhai,Classification of Moebius isoparametric hypersurfaces in the unit six-sphere,Tohoku Mathematical Journal, 60 (2008),no. 4,499-526.

74.Pinghua FengandZejun Hu:AnL^p-estimate for surfaces of constant mean curvature inS^3,Archiv der Mathematik,91 (2008), 461–470.

75.Zejun HuandFan Yang:A new variational characterization of four-dimensional manifolds with constant scalar curvature,Results in Mathematics, 52(2008), no. 3-4, 315-321.

76.Zejun Hu,Haizhong LiandLuc Vrancken:Characterisations of the Calabi product of hyperbolic affine hyperspheres,Results in Mathematics, 52(2008),no. 3-4,299-314.

77.Zejun Hu, Haizhong Li and Udo Simon:Schouten curvature functions on locally conformally flat Riemannian manifolds,Journal of Geometry, 88(2008),no. 1-2,75-100.

78.Zejun Hu,Mike Scherfner and Shujie Zhai:On spacelike hypersurfaces with constant scalar curvature in the de Sitter space,Differential Geometry and Its Applications,25(2007), 594–611.

79.Zejun Hu and Deying Li:Moebius isoparametric hypersurfaces with three principal curvatures,Pacific Journal of Mathematics, 232(2007),no. 2,289-311.

80.Zejun Hu, Haizhong Li and Changping Wang:Classification of Moebius isoparametric hypersurfaces inS^5,Monatshefte fuer Mathematik, 151(2007),no. 3,201–222.

81.Zejun Hu and Shujie Zhai:A sphere theorem for even-dimensional submanifolds of the unit sphere,郑州大学学报(理学版),37(1), 1-4, 2005.

82.Zejun Hu and Shujie Zhai:Hypersurfaces of the hyperbolic space with constant scalar curvature,Results in Mathematics, 48(2005), 65-88.

83.Zejun Hu and Guosong Zhao:Some remarks on the Kozlowski-Simon conjecture for affine ovaloids,Banach Center Publications, 69(2005), 189-193. Institute of Mathematics, Polish Academy of Sciences, Warszawa.

84.Zejun Hu and Haizhong Li:Classification of Moebius isoparametric hypersurfaces inS^4,Nagoya Mathematical Journal, 179(2005),147-162.

85.Zejun Hu and Haizhong Li:A rigidity theorem for hypersurfaces with positive Moebius Ricci curvature inS^{n+1},Tsukuba Journal of Mathematics, 29(2005), no. 1,29-47.

86.Zejun Hu and Haizhong Li:Scalar curvature, Killing vector fields and harmonic one-forms on compact Riemannian manifolds,Bulletin of the London Mathematical Society,36(2004),no.5,587-598.

87.Zejun Hu and Haizhong Li:S^{n+1}中具平行Moebius第2基本形式超曲面的分类,中国科学A辑,34(2004),no. 1,28-39.

88.Zejun Hu and Haizhong Li:Classification of hypersurfaces with parallel Moebius second fundamental form inS^{n+1}Science in China SeriesA, Mathematics, 47(2004) ,no. 3,417-430.

89.Zejun Hu and Haizhong Li:Willmore submanifolds in a Riemannian manifold, Contemporary Geometry and Related Topics, Proceedings of the Workshop, Belgrad, Yugoslavia 15-21, 2002. 275-299.

90.Zejun Hu and Haizhong Li:Willmore Lagrangian spheres in the complex Euclidean spaceC^n,Annals of Global Analysis and Geometry, 25(2004),no. 1,73-98.

91.Zejun Hu and Haizhong Li:A new variational characterization ofn-dimensional space forms,Transactions of the American Mathematical Society,356(2004),no. 8,3005-3023.

92.Zejun Hu and Guoxin Wei:On the nonexistence of stable minimal submanifolds and the Lawson-Simons conjecture,Colloquium Mathematicum, 96(2003),no. 2,213-223.

93.Zejun Hu and Haizhong Li:Submanifolds with constant Moebius scalar curvature inS^n,Manuscripta Mathematica, 111(2003),no. 3,287-302.

94.Zejun Hu and Haizhong Li:Complete submanifolds with parallel mean curvature and finite total curvature,Geometry and Topology of Submanifolds X, World Scientific Publishing Co., 2000,73-86.

95.胡泽军:一类非线性椭圆型方程的一个Liouville定理,数学物理学报,20A(2000),no. 4,474-479.

96.Zejun Hu and Zhenzu Sun:A new interpretation for the Backlund transformation of the Sine-Gordon equation,Kodai Mathematical Journal, 23(2000),no. 1,100-104.

97.胡泽军:负曲率流形上给定数量曲率的共形形变,数学学报,42(1999),no. 2,207-214.

98.胡泽军:双曲空间H^2(-1)上预定高斯曲率的共形形变,数学年刊,20A(1999),no. 5,587-596.

99.Zejun Hu:Isometric immersions from the hyperbolic spaceH^n(-1)intoH^{n+1}(-1),Colloquium Mathematicam, 79(1999),no. 1,17-23.

100.Zejun Hu:Conformal deformations for prescribing scalar curvature on Riemannian manifolds with negative curvature,Acta Mathematica Sinica, New Series, 14(1998),no. 3,361-370.

101.Zejun Hu and Guosong Zhao:Classification of isometric immersions of the hyperbolic spaceH^2intoH^3,Geometriae Dedicata, 65(1997),no. 1,47-57.

102.Zejun Hu and Guosong Zhao:Isometric immersions from the hyperbolic spaceH^2(-1)intoH^3(-1),Proceedings of the American Mathematical Society, 125(1997),no. 9,2693-2697.

103.Zejun Hu and Haizhong Li:A global pinching theorem for compact surfaces inS^3with constant mean curvature,Acta Mathematica Sinica, New Series, 12(1996),no. 2,126-132.

104.胡泽军,孙振祖:常曲率空间中具平行平均曲率向量的子流形,数学研究与评论,16(1996),no. 1,69-75.

105.Zejun Hu:Complete hypersurfaces with constant mean curvature and nonnegative sectional curvature,Proceedings of the American Mathematical Society, 123(1995),no.9,2835-2840.

上一篇:胡玉萍

下一篇:胡增辉