师资队伍

Y

当前位置: 首页 -> 师资队伍 -> 全体教师 -> 按拼音排序 -> Y -> 正文

原晋江

作者: 来源: 阅读次数: 日期:2024-03-29

姓名:原晋江

职务/职称:教授(博士生导师)

研究领域:运筹学,图论与组合最优化,排序与调度

邮箱:yuanjj@zzu.edu.cn


简要经历

1980-09 至 1984-06, 太原工业大学, 应用数学, 学士

1986-09 至 1989-06, 郑州大学, 图论与组合最优化, 硕士

1992-09 至 1995-06, 四川大学, 应用数学, 博士

1999-08 至 2001-08, 香港理工大学,博士后

1989-07 至 1992-08, 郑州大学, 数学与统计学院, 讲师

1995-07 至 1998-08, 郑州大学, 数学与统计学院, 副教授

2002-01 至 今, 郑州大学, 数学与统计学院, 教授


主要项目

1.国家自然科学基金委员会,青年项目,图的树分解参数与子式理论,1999-01 至 2001-12,主持。

2.国家自然科学基金委员会,面上项目,装配型排序理论—计算复杂性、近似算法和随机算法,2004-01 至 2006-12,主持。

3.国家自然科学基金委员会,面上项目,多代理多工序排序理论—计算复杂性和可近似算法, 2007-01 至 2009-12,主持。

4.国家自然科学基金委员会,中港NSFC-RGC联合基金项目,物流和供应链管理中的调度问题, 2008-01 至 2010-12,主持。

5.国家自然科学基金委员会,面上项目,平行机分组工件排序的多面体方法,2010-01 至 2012-12,主持。

6.国家自然科学基金委员会,面上项目,在线和离线折衷排序研究,2013-01 至 2016-12,主持。

7.国家自然科学基金委员会,面上项目,多指标排序研究,2017-01 至 2020-12, 主持。

8.国家自然科学基金委员会,面上项目,分级指标排序与折衷指标排序研究,2021-01 至2024-12,主持

9.国家自然科学基金委员会,面上项目,基于图结构分析的全对偶整数性及算法研究,2024-01 至 2027-12,参与


奖励

获2023年度中国运筹学会“最美科技工作者”荣誉称号。


其他

郑州大学数学与统计学院教授、博士生导师、教授委员会主任,曾任中国运筹学会数学规划分会资深理事,《运筹学学报》常务编委,SCI 期刊《Journal of Scheduling》编委。曾发表SCI 期刊学术论文200 余篇,主持国家自然科学基金项目8 项,并与团队成员一起攻克了排序论中二十多个历史遗留的计算复杂性问题。


论文

1.Single-machine scheduling of multiple projects with controllable processing times, European Journal of Operational Research, 2023, 308(3): 1074-1090.

2.Bicriterion Pareto-scheduling of equal-length jobs on a single machine related to the total weighted late work, Naval Research Logistics, 2023, 70:537–557.

3.Revisit the scheduling problem with assignable or generalized due dates to minimize total weighted late work, International Journal of Production Research 2023, 61(22): 7630-7648.

4.Pareto-scheduling of two competing agents with their own equal processing times, European Journal of Operational Research, 2022, 301(2): 414-431.

5.Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion, European Journal of Operational Research, 2021, 293(1): 79-92.

6.Pareto-optimization of three-agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work, Naval Research Logistics, 2021, 68:378–393.

7.Scheduling with release dates and preemption to minimize multiple max-form objective functions, European Journal of Operational Research, 2020, 280(3): 860-875.

8.Single‐machine scheduling with deadlines to minimize the total weighted late work, Naval Research Logistics, 2019, 66(7):582-595.

9.A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan, European Journal of Operational Research, 2019, 273: 74-81.

10.Two-agent scheduling on a single sequential and compatible batching machine, Naval Research Logistics, 2017, 64:628–641.

11.On matching cover of graphs, Mathematical Programming, 2014, 147: 499-519.

12.Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan, European Journal of Operational Research, 2011, 210(3):482-488.

13.A note on the single machine scheduling to minimize the number of tardy jobs with deadlines, European Journal of Operational Research, 2010, 201(3): 966-970.

14.Single machine scheduling with release dates and rejection, European Journal of Operational Research, 2009, 198(3): 975-978.

15.Single-machine scheduling of multi-operation jobs without missing operations to minimize the total completion time, European Journal of Operational Research, 2008, 191(2): 320-331.

16.Multi-agent scheduling on a single machine with max-form criteria, European Journal of Operational Research, 2008, 188(2):603–609.

17.Single machine unbounded parallel-batch scheduling with forbidden intervals, European Journal of Operational Research, 2008, 186(3):1212-1217.

18.NP-hardness of the single-variable-resource scheduling problem to minimize the total weighted completion time, European Journal of Operational Research, 2007, 178(2):631–633.

19.Approximability of single machine scheduling with fixed jobs to minimize total completion time, European Journal of Operational Research, 2007, 178(1):46-56.

20.The single machine batching problem with identical family setup times to minimize maximum lateness is strongly NP-hard, European Journal of Operational Research, 2007, 177(2):1302-1309.

21.Rescheduling with release dates to minimize makespan under a limit on the maximum sequence disruption, European Journal of Operational Research, 2007, 182(2):936-944.

22.A note on the complexity of flow shop scheduling with transportation constraints, European Journal of Operational Research, 2007, 178(3):918-925.

23.Single machine scheduling to minimize total weighted tardiness, European Journal of Operational Research, 2005, 165(2):423-443.

24.Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria, European Journal of Operational Research, 2005, 164(3):851-855.

25.Single machine parallel batch scheduling subject to precedence constraints, Naval Research Logistics, 2004, 51(7):949 – 958.

26.A note on the single machine serial batching scheduling problem to minimize maximum lateness with identical processing times, European Journal of Operational Research, 2004, 158:525-528.

27.A note on the complexity of single-machine scheduling with a common due date, earliness-tardiness, and batch delivery costs, European Journal of Operational Research, 1996, 94(1):203-205.

上一篇:姚昌辉