报告题目:Rota's classication problem for nonsymmetric operads.
时间:2020年9月25日 上午8:30—9:30
地点:腾讯会议 会议号 200 125 765
摘要: Recently, Rota's Classication Problem on algebraic operator identities has been studied in the context of Grobner-Shirshov bases and rewriting systems, giving an equivalence of the Classication Problems with the existence of the Gröbner-Shirshov bases and the convergence of the corresponding rewriting system, all for associative algebras with a linear operator. In this talk, we discuss the generalization of Rota's Classication Problem to general algebraic structures, namely operads, in particular nonsymmetric operads. This approach also allows us to study (disconnected) operads from the viewpoint of the Classication Problem. Applications to Koszulity of operads are obtained. This is a joint work with Xing Gao and Huhu Zhang.
报告人简介:郭锂,美国罗格斯大学纽瓦克分校教授。郭锂博士于兰州大学获学士学位,于武汉大学获硕士学位,于华盛顿大学获博士学位,并在俄亥俄州立大学、普林斯顿高等研究院和佐治亚州大学作博士后,现任罗格斯大学数学与计算机科学系系主任。郭锂博士的数论工作为怀尔斯证明费马大定理的文章所引用,并将重整化这一物理方法应用于数学研究,他近年来推动Rota-Baxter代数及相关数学和理论物理的研究,应邀为美国数学会在“What Is”栏目中介绍Rota-Baxter代数,并出版这个领域的第一部专著。研究涉及结合代数,李代数,Hopf代数,operad,数论,组合,计算数学,量子场论和可积系统等数学和理论物理的广泛领域。