报告题目:Solving Singularly Perturbed Neumann Problems for Multiple Solutions
报告人: 谢资清教授
报告时间:2019年9月29日上午10:00-11:00
报告地点:金融实验室
摘要:
In this talk, based on the analysis of bifurcation points and Morse indices of trivial solutions at any perturbation value, the generating process of nontrivial positive solutions for a general singularly perturbed Neumann boundary value problem is developed. The bifurcation points of each trivial solution and then the exact critical perturbation value $\varepsilon_c$ which determines the existence or non-existence of nontrivial positive solutions are verified. An efficient local minimax method based on the bifurcation and Morse theory is proposed to compute both M-type and W-type saddle points by introducing an adaptive local refinement strategy, a continuation strategy for initial selection and the Newton method to improve the convergence speed. Extensive numerical results are reported to investigate the critical value $\varepsilon_c$ and present interesting properties of different types of multiple solutions.
个人简介:
谢资清,湖南师范大学教授、博士生导师、数学与计算机科学学院院长。同时,她还是第十三届全国人大代表、致公党湖南省委副主委、“高性能计算与随机信息处理”教育部重点实验室主任。湖南师范大学基础数学全国重点培育学科和数学湖南省国内一流建设学科带头人。1996年毕业于中国科学院应用数学研究所,获理学博士学位。2012年以第一完成人身份获湖南省自然科学奖一等奖。入选教育部新世纪优秀人才培养计划,享受国务院政府特殊津贴专家。主持国家自然科学基金项目6项,其中重大研究计划项目1项。主要从事非线性偏微分方程多解理论及计算方法、奇异摄动问题数值解法、间断有限元方法的研究。在SIAM J. Sci.Comp., Math.Comput., SIAM Numer. Anal.,IMA Numer. Ana.等刊物发表论文60余篇。