首页

学术报告

当前位置: 首页 -> 学术报告 -> 正文

中山大学何伟强副教授学术报告

作者: 来源: 阅读次数: 日期:2023-03-11

题目:Equivariant Hikita conjecture for minimal nilpotent orbit

报告人:何伟强 (中山大学 副教授)

腾讯会议:6385791642

时间:202331614:00-18:00

摘要:The theory of symplectic duality is a kind of mirror symmetry in mathematical physics. Suppose two (possibly singular) manifolds are symplectic dual to each other, then there are some highly nontrivial identities between the geometry and topology of them. One of them is the equivariant Hikita conjecture. Suppose we are given a pair of symplectic dual conical symplectic singularities, then Hikita’s conjecture is a relation of the quantized coordinate ring of one conical symplectic singularity to the equivariant cohomology ring of the symplectic resolution of the other dual conical symplectic singularity. In this talk, I will focus on this case: the minimal nilpotent orbit and the slodowy slice of the subregular orbit. This is a joint work with Xiaojun Chen and Sirui Yu.


报告人简介:何伟强,中山大学数学学院副教授。曾于清华大学丘成桐数学科学中心从事博士后研究工作。研究领域为数学物理,特别在镜像对称领域有很深造诣。已在J. Eur. Math. Soc., J. Reine Angew. Math., Comm. Math. Phys.等学术期刊发表多篇研究论文。