首页

学术报告

当前位置: 首页 -> 学术报告 -> 正文

华中师范大学阴小波教授学术报告

作者: 来源: 阅读次数: 日期:2022-09-19

报告题目A Conforming DG Method for Linear Nonlocal Models with Integrable Kernels

报告人:阴小波教授(华中师范大学)

报告时间:2022916日(本周五)14:30-16:30

#腾讯会议:869-637-304

点击链接入会,或添加至会议列表:

https://meeting.tencent.com/dm/JoVcMzl8Np55

题目:A Conforming DG Method for Linear Nonlocal Models

with Integrable Kernels


摘要:The numerical solution of nonlocal constrained value problems with integrable kernels is considered in this talk. These nonlocal problems arise in nonlocal mechanics and nonlocal diffusion. The structure of the true solution to the problem is analyzed first. The analysis leads naturally to a new kind of discontinuous Galerkin method that can more efficiently solve the problem numerically. The new method is shown to be asymptotically compatible. Moreover, it has optimal convergence rate for any dimensional case under mild assumptions. We also give some applications of this method, such as to diffusion and sub-diffusion equations.


个人简介:阴小波,本科毕业于南开大学数学科学学院,博士毕业于中国科学院数学与系统科学研究院,现为华中师范大学数学与统计学学院教授、博士生导师。主要研究方向为有限元高精度算法、移动网格方法和非局部问题的数值分析。已在SIAM Journal on Numerical Analysis, Journal of Computational Physics, Journal of Scientific Computing, Communications in Mathematical Sciences, Advance in Computational Mathematics等杂志上发表多篇文章。主持三项国家自然科学基金项目,作为主要成员参与一项国家自然科学基金重大研究计划重点支持项目。