报告题目:Energy-stable parametric finite element methods (PFEM) for geometric PDEs and applications
报告时间:2021年11月24日(星期三) 下午14:30 - 17:30
报告平台:腾讯会议,ID: 190 810 421
报告人: 包维柱教授 (新加坡国立大学)
摘要:In this talk, I begin with a review of different geometric flows (PDEs) including mean curvature (curve shortening) flow, surface diffusion flow, Willmore flow, etc., which arise from materials science, interface dynamics in multi-phase flows, biology membrane, computer graphics, geometry, etc. Different mathematical formulations and numerical methods for mean curvature flow are then discussed. In particular, an energy-stable semi-implicit parametric finite element method (PFEM) is presented in details. Then the PFEM is extended to surface diffusion flow and anisotropic surface diffusion flow, and a structure-preserving implicit PFEM is proposed. Finally, sharp interface models and their PFEM approximations are presented for solid-state dewetting. This talk is based on joint works with Wei Jiang, Yifei Li, Yan Wang and Quan Zhao.
报告人简介:包维柱教授1995年博士毕业于清华大学,现为新加坡国立大学数学系provost讲席教授,2013年获冯康科学计算奖,2014年应邀在韩国举行的第26届国际数学家大会上作45分钟邀请报告,担任包括SIAM Journal on Scientific Computing等多个国际期刊杂志编委。包维柱教授长期从事科学与工程计算研究,主要工作涉及偏微分方程数值方法及其在量子物理、流体和材料中的应用。特别是在Bose-Einstein 凝聚的数值方法及应用、高震荡色散类偏微分方程的多尺度算法和分析、无界区域上科学和工程问题的计算等方面取得了多个重要进展。
欢迎广大师生参加!