报告题目:Compressible Euler limit from Boltzmann equation with Maxwell reflection boundary condition in half-space
报告时间:腾讯会议(331 369 402),2021.06.02, 9:00-12:00
报告人:江宁,武汉大学数学与统计学院教授, 博士生导师。
摘要:In this talk, we will introduce the compressible Euler limit from the scaled Boltzmann equation with Maxwell reflection boundary condition in half-space. Starting from the local-in-time classical solution to the compressible Euler system with impermeable boundary condition in half-space, employing the coupled weak viscous layers (governed by linearized compressible Prandtl equations with Robin boundary condition) and linear kinetic boundary layers, and the analytical tools in [Guo-Jang-Jiang-2010-CPAM] and some new boundary estimates both for Prandtl and Knudsen layers, we proved the local-in-time existence of Hilbert expansion type classical solutions to the scaled Boltzmann equation with Maxwell reflection boundary condition with accommodation coefficient as power of Knudsen number when the Knudsen number small enough. As a consequence, this justifies the corresponding case of formal analysis in Sone's books [Sone-2002-Book, Sone-2007-Book]. This work is joint with Prof. Yi-long Luo and Dr. Shaojun Tang.
报告人简介:江宁,武汉大学数学与统计学院教授, 博士生导师。本科毕业于南京大学数学系,硕士毕业于中科院数学所(导师为丁伟岳院士),博士毕业于美国马里兰大学(导师为C. D. Levermore教授)。2006-2010年在纽约大学Courant研究所任Courant讲师,2010-2015年在清华大学数学科学中心任教,2015年至今任武汉大学数学与统计学院教授。 江宁教授的研究方向为非线性偏微分方程和几何分析, 相关成果发表在CPAM, ARMA等国际著名期刊杂志上。