
姓名:许晓雪
职务/职称:副教授
研究领域:离散可积系统、量子可积系统、可积系统中的代数几何方法
邮箱:xiaoxuexu@zzu.edu.cn
简要经历
许晓雪,理学博士,物理学博士后,博士生导师,University of Leeds(英国)访问学者,美国《数学评论》评论员。
讲授课程
本科课程:《数学分析》、《数学分析习题》、《微积分A》、《微积分B》
研究生课程:《微分流形》、《基础拓扑学》
主要项目
● 国家自然科学基金面上项目,主持,2026.01-2029.12
● 国家自然科学基金青年科学基金,主持,2016.01-2018.12
● 国家自然科学基金数学天元基金,主持,2015.01-2015.12
● 国家自然科学基金青年科学基金,参与,2017.01-2019.12
● 河南省高等学校重点科研项目,主持,2023.01-2024.12
● 基础研究面上培育基金,主持,2023.9-2025.9
● 郑州大学青年骨干教师培养计划,主持,2016.07-2019.07
● 郑州大学教育教学改革研究与实践项目,主持,2024
● 省级教育教学改革研究与实践项目,参与,2024
● 高等学校本科教学质量工程,唯一指导教师,2024
● 郑州大学研究生教育研究项目,参与,2021
● 研究生教改与质量提升工程及优质课程建设项目,主持, 2019
奖励
● 林枫教育奖,河南省林枫教育基金,2021
● 教学优秀奖,2018
● 《数学分析》课程优秀学习团队,第一指导教师,2021
论文
● Xu Xiaoxue, Yi Decong, Li Xing , Zhang Da-jun. Algebro-geometric integration to the discrete Chen–Lee–Liu system. Phys. D 481, 134778 (2025)
● Liu Weifang, Cao Cewen, Yang Xiao, Xu Xiaoxue*.The (2+1)-dimensional Schwarzian Korteweg–de Vries equation and its generalizations with discrete Lax matrices. Math. Meth. Appl. Sci. 47, 14321–14340 (2024)
● Xu Xiaoxue, Yi Decong, Ma Liyuan. A novel solution to the generalized lattice Liouville equation. Appl. Math. Lett. 155, 109115 (2024)
● Xu Xiaoxue, Cao Cewen, Zhang Da-jun. Algebro-geometric solutions to the lattice potential modified Kadomtsev-Petviashvili equation. J. Phys. A: Math. Theor. 55,375201 (2022)
● Xu Xiaoxue, Cao Cewen, Nijhoff Frank W. Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps. Nonlinearity 34, 2897-2918 (2021)
● Xu Xiaoxue, Jiang Mengmeng, Nijhoff Frank W. Integrabe symplectic maps associated with discrete Korteweg-de Vries-type equations. Stud. Appl. Math. 146, 233-278 (2021)
● Xu Xiaoxue, Cao Cewen, Zhang Guangyao. Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation. J. Nonlinear Math. Phys. 27, 633-646 (2020)
● Cao Cewen, Xu Xiaoxue, Zhang Da-jun. On the lattice potential KP equation. In: Nijhoff F., Shi Y., Zhang D. (eds) Asymptotic, Algebraic and Geometric Aspects of Integrable Systems. Springer Proceedings in Mathematics & Statistics, vol 338. Springer, Cham (2020)
● Xu Xiaoxue. Algebro-geometric construction to the lattice potential modified Kadomtsev-Petviashvili equation. Lagrangian Multiform Theory and Pluri- Lagrangian Systems workshop (2023)
● Xu Xiaoxue. On the Integrable Lattices of Octahedron Type. The 7th International Conference on Nonlinear Mathematical Physics & The 14th National Workshop on Solitons and Integrable Systems (2017)
● Xu Xiaoxue, Cao Cewen. A new explicit solution to the lattice sine-Gordon equation. Modern Phys. Lett. B 30, 1650166 (2016)
● Cao Cewen, Xu Xiaoxue: A finite genus solution of the Veselov’s discrete Neumann system. Commun. Theor. Phys. 58, 469-474 (2012)
● Cao Cewen, Xu Xiaoxue. A finite genus solution of the H1 model. J. Phys. A: Math. Theor. 45, 055213 (2012)