师资队伍

按拼音排序

崔磊磊

作者: 来源: 阅读次数: 日期:2025-09-18

姓名:崔磊磊

职务/职称:助理教授

研究领域:非线性泛函分析、非线性偏微分方程

邮箱:leileicui@zzu.edu.cn


简要经历

2025.09-至今    郑州大学数学与统计学院   助理教授

2021.09-2025.06     华中师范大学       理学博士学位

2020.09-2021.06     华中师范大学         科研助理

2017.09-2020.06     华中师范大学       理学硕士学位

2013.09-2017.06     华中师范大学       理学学士学位


其他

我目前的研究兴趣包括:平均场方程、Toda系统相关的爆破分析以及flow,半线性抛物方程,图上的偏微分方程,非局部椭圆方程的有限维约化等。

若您对我的研究内容感兴趣,欢迎随时与我讨论交流!


代表论文

[1] L.L. Cui, J.C. Wei, W. Yang*, L. Zhang, The blow-up analysis on $\mathbf{B}_{2}^{(1)}$ affine Toda system: Local mass and affine Weyl group. Int. Math. Res. Not. IMRN 2023, no. 18, 16140-16199.


[2] L.L. Cui, C.F. Gui, H.C. Yan, W. Yang*, Critical prescribed $Q$-curvature flow on closed even-dimensional manifolds with sign-changing functions. J. Funct. Anal. 289 (2025), no. 11, Paper No. 111133, 71 pp.


[3] L.L. Cui, Y. Liu, C.H. Wang, J. Wang, W. Yang*, The Einstein-scalar field Lichnerowicz equations on graphs. Calc. Var. Partial Differential Equations 63 (2024), no. 6, Paper No. 138, 45 pp.


[4] L.L. Cui, J.X. Guo, G.B. Li*, The existence and local uniqueness of multi-peak solutions to a class of Kirchhoff type equations. Acta Math. Sci. Ser. B (Engl. Ed.) 43 (2023), no. 3, 1131-1160.


[5] L.L. Cui, G.B. Li*, P. Luo, C.H. Wang, Existence and local uniqueness of normalized multi-peak solutions to a class of Kirchhoff type equations. Minimax Theory Appl. 7 (2022), no. 2, 207-252.


[6] L.L. Cui, C.F. Gui*, A. Jevnikar, C.-S. Lin, W. Yang, The applications of the algebraic structure on the Toda systems associated with $\mathbf{D}_n$ and $\mathbf{F}_4$ types.


[7] L.L. Cui, Z.H. Nie, W. Yang*, Affine Toda system of $\mathbf{A}$ and $\mathbf{C}^t$ type: compactness and affine Weyl group.


[8] ****, The MEMS equation on graphs. Preprint.


[9] ****, A minimization approach to nonlocal wave equations. Preprint.


上一篇:薛杰

下一篇:张健