李阳

作者: 时间:2019-04-02 点击数:


姓名:李阳  职称:副教授

最高学历:工学博士  从事专业:无损检测与评价

社会兼职:

1. 中国机械工程学会无损检测分会应力测试大会——副主席

2. 中国机械工程学会无损检测分会超声检测大会——委员

3. 河南省机械工程学会无损检测分会——副理事

4. 河南省机械工程学会无损检测标准化技术工作组委员会——副主任委员;

5. 河南省声学与无损检测计量技术委员会——委员;

6. 《焊接杂志社》青年编委会委员;

7. 全国大学生焊接创新大赛评委;

8. 无损检测、振动测试诊断、Material science and engineering AAplied OpticsJournal of Advanced Manufacturing TechnologySurface and Coatings TechnologyNDE等国内外期刊审稿人

研究方向:

1. 应力检测,包括:残余应力X射线衍射法、超声临界折射纵波法、梯度残余应力的表面波检测、螺栓预紧力检测、焊接残余应力检测等

2. 无损检测评价,包括:水浸超声C扫描和超声显微镜设备开发、超声可视化技术兰姆波技术的研究应用超声导波技术的研究应用等。

代表性的科研项目已主持10余项

1. 高铁车轴用DZ2钢硬度梯度的激光超声无损表征研究,河南省科技厅-科技攻关

2. 基于兰姆波技术的搭接焊缝抗拉强度的无损评价研究,国家自然科学基金

3. 兰姆波在搭接焊缝上的散射机理研究,河南省教育厅-河南省高等学校重点科研项目

4. 不锈钢车体焊接技术工程化应用研究-不锈钢激光焊缝无损检测技术工程化应用研究,中车青岛四方机车车辆股份有限公司

5. 非压接接续金具动态承载性能测试与评估,国网河南省电力公司电力科学研究院

代表性的论文(已发表50余篇):

(1)Xu B, Zou Y, Sha G, et al. Sparse wavefield reconstruction based on Physics-Informed neural networks[J]. Ultrasonics, 2025: 107582.

(2)Li Y, Xu B, Zou Y, et al. Leveraging physics-informed neural networks for wavefield analysis in laser ultrasonic testing[J]. Nondestructive Testing and Evaluation, 2024: 1-23.

(3)Zou Y, Qian J, Wang X, et al. Machine learning-assisted prediction and interpretation of electrochemical corrosion behavior in high-entropy alloys[J]. Computational Materials Science, 2024, 244: 113259.

(4)Qian J, Li Y, Hou J, et al. Accelerating the development of FeCoNiCr system HEAs with high hardness by deep learning based on Bayesian optimization[J]. Journal of Materials Research, 2024, 39(15): 2115-2130.

(5)Zou Y, Qian X, Liu S, et al. Simultaneously improved mechanical properties and corrosion resistance of Mg-10.02 Li-5.69 Al-0.08 Er alloy by solutionizing treatments[J]. Journal of Alloys and Compounds, 2024, 1002: 175188.

(6)Zou Y, Shen R, Lian Y, et al. Enhancement of strengthductility combination and corrosion resistance behaviour in (FeCoNiCr) 92Ti3. 5Al4. 5 high-entropy alloy[J]. Materials Science and Technology, 2024, 40(18): 1363-1376.

(7)Li Y, Zhu W, Zou Y. Nondestructive detection of laser-cladding coating interface defects: a deep learning-enhanced laser ultrasonics approach[J]. Nondestructive Testing and Evaluation, 2025, 40(3): 1016-1033.

(8)Zou Y, Qian X, Liu S, et al. Achieving high mechanical and corrosion resistance synergy properties of the Mg-11Li-6Al alloy through simple solutionizing treatments[J]. Vacuum, 2024, 221: 112953.

(9)Li Y, Lian Y, Jing F, et al. Improvement in the tribological behaviour of surface-nanocrystallised 304 stainless steel through supersonic fine particle bombardment[J]. Applied Surface Science, 2023, 627: 157334.

(10)Zou Y, Shen R, Lu Z, et al. Enhanced lowcycle fatigue behavior LZ91 MgLi alloy with ultrasonic nanocrystal surface modification[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(7): 2485-2495.


机械团学汇
Copyright© 2023All Rights Reserved. 郑州大学机械与动力工程学院版权所有