张东伟

作者: 时间:2025-09-04 点击数:


个人简介

张东伟,河南开封人,副教授,博士生导师,2013年获西安交通大学动力工程及工程热物理专业博士学位。郑州大学动力工程及工程热物理专业博士后,美国堪萨斯大学访问学者江苏省双创博士”技术人才,河南省科学技术协会青年托举人才,郑州大学青年骨干教师。从事热力系统能量转换、工业余热高效综合利用、制冷热泵技术和强化传热技术方面的研究,承担国家自然科学基金1河南省高等学校重点科研项目1高等学校能源动力类新工科研究与实践项目1项,江苏省绿色过程装备重点实验室开放课题1项,参与国家自然科学基金项目3项、承担和参与地方及企业合作项目9项。发表论文70SCI论文60篇)教研论文近10篇,参编专业教材2部,承担Energy Conversion and ManagementEnergyInternational Journal of Heat and Mass Transfer Applied Thermal Engineering多个期刊的审稿工作

指导研究生获得国家奖学金、三好研究生、优秀毕业生、中国制冷空调竞赛河南省二等奖,毕业生有多人进入香港中文大学(深圳)、上海交通大学、西安交通大学、西北工业大学、重庆大学等继续攻读博士学位;指导本科生在国际期刊发表学术论文,申请发明专利;指导本科生获全国大学生节能减排社会实践与科技竞赛金奖(国际赛道),美国数学建模竞赛特等奖提名、一二等奖多项,获国家级科技创新比赛特等奖、一等奖和二等奖多项,多名学获得科研训练和实践创新基金项目资助。

联系电话13526854826;      E-mailzhangdw@zzu.edu.cn

研究领域及方向

1. 传热传质强化节能技术

2. 多源热力系统能量转换技术

3. 新型制冷热泵技术

4. 工业余热多效梯级利用技术

近年来承担的科研项目

1. 国家自然科学基金委员会,青年项目,51706208,超声波激励下脉动热管的启动特性及多场耦合强化的机理研究,2018.01-2020.12,主持

2. 江苏省绿色过程装备重点实验室,开放课题基金项目,压缩喷射式跨临界CO2热泵系统研究2021.01-2022.12,主持

3. 河南省科学技术协会,青年人才托举项目,2020HYTP023带回热器的跨临界二氧化碳热泵-热水系统综合性能的实验研究2020.01-2021.12,主持

4. 河南省教育厅,高等学校重点科研项目16A480011多物理场耦合作用下超声波强化传热机理与实验研究2016.01-2017.12,主持

5. 江苏省科技厅,“双创博士”科技副总项目,2016.01-2017.12,主持

6. 郑州大学青年骨干教师培养计划,超声波强化微通道换热的空化效应及多场耦合机理研究,2021.01-2023.12,主持

7. 郑州大学培育基金项目,超声波强化微通道相变换热的空化效应及多场耦合机理研究,2021,主持

8. 基于地热源的二氧化碳热泵供暖系统开发,横向项目,2024-2025,主主持

9. 垃圾焚烧电厂烟气污染物处理系统开发,横向项目,2023-2024主持

10. 二噁英低温裂解微观过程技术研究,横向项目,2023,主持

11. 20万吨/年苯加氢项目》节能评估,横向项目,2022,主持


近年来承担和参与的教学改革项目

1. 教育部高等学校能源动力类专业教学指导委员会研究与实践项目,高等学校能源动力类新工科研究与实践项目,NDXGK2017Y-66基于大学生科创大赛的新工科培养模式探索2018.01-2019.12,主持

2. 郑州大学教学改革类项目,基于科创比赛的大学生创新实践能力培养研究,2022.08-2024.07,主持

3. 教育部高等学校能源动力类教指委教学研究与实践项目NSJZW2021Y-44,《传热学》混合式金课建设的研究与实践,2022.01-2023.12,参与

4. 教育部高等学校能源动力类教指委教学研究与实践项目NSJZW2021Y-112,多尺度模拟在能源动力类课程教学中的应用, 2022.01-2023.12,参与

5. 河南省本科高等学校精品在线开放课程项目《传热学》,2021,参与


近五年来发表的代表性论文及成果

[1] Comprehensive energy efficiency analysis of the system combined with air source heat pump and absorption refrigeration. Thermal Science and Engineering Progress. 2025: 104046. Accept.

[2] Operation analysis and parameter optimization of ultra-maximum hydraulic diameter pulsating heat pipe using Taguchi and response surface methods. International Communications in Heat and Mass Transfer. 2025, 168: 109456. https://doi.org/10.1016/j.icheatmasstransfer.2025.109456.

[3] An experimental study on the heat transfer performance of parallel-flat heat pipe with self-rewetting fluid. International Communications in Heat and Mass Transfer. 2025. 109424.

[4] Numerical study on thermal-work conversion performance of dynamic system driven by temperature difference between evaporation and condensation. Energy. 2025. 137739. https://doi.org/10.1016/j.energy.2025.137739.

[5] An improved model based on lattice Boltzmann method for the simulation of water and salt migration in unsaturated soils. Journal of Hydrology. 2025. 661(C): 133801. https://doi.org/10.1016/j.jhydrol.2025.133801.

[6] Numerical simulation of water evaporation and migration characteristics of heat storage soil layer at pore scale. Applied Thermal Engineering. 2025. 277: 127090. https://doi.org/10.1016/j.applthermaleng.2025.127090.

[7] Numerical study on the heat transfer enhancement in boundary layer of microchannels assisted by protrusions and ultrasound. International Communications in Heat and Mass Transfer. 2025. 164: 108940. https://doi.org/10.1016/j.icheatmasstransfer.2025.108940.

[8] Analysis of heat transfer performance and energy efficiency of the microchannel combined with ultrasound and nanofluid. Applied Thermal Engineering. 2025. 271: 126268. https://doi.org/10.1016/j.applthermaleng.2025.126268.

[9] Degradation of PCDD/Fs from incineration of waste at low temperatures for resource utilization of fly ash. Scientific Reports. 2025, 15: 4169. https://doi.org/10.1038/s41598-025-88155-5.

[10] Experimental investigation on thermal characteristics and performance enhancement of pulsating heat pipe with ultra-maximum hydraulic diameter. Applied Thermal Engineering. 2025, 267: 125702. https://doi.org/10.1016/j.applthermaleng.2025.125702.

[11] Study on temperature distribution optimization and enhanced heat transfer in shell and tube phase change accumulator. Renewable Energy. 2025, 242: 122469. https://doi.org/10.1016/j.renene.2025.122469.

[12] Analysis of heat transfer characteristics and optimization of variable-direction twisted oval tubes with inserts. International Journal of Thermal Sciences. 2025, 210: 109661. https://doi.org/10.1016/j.ijthermalsci.2024.109661.

[13] Investigation of flow and heat transfer characteristics in microchannel with high-frequency ultrasound. Thermal Science and Engineering Progress. 2025, 59: 103305. https://doi.org/10.1016/j.tsep.2025.103305.

[14] Numerical analysis of thermoacoustic heat pump driving by prime mover. Heat Transfer Research. 2025 56(3):15-29. DOI: 10.1615/HeatTransRes.2024053033.

[15] A numerical simulation study on the spontaneous imbibition and hydro-thermal coupling in soil using the lattice Boltzmann method. International Communications in Heat and Mass Transfer. 2024. 159(A): 108048. https://doi.org/10.1016/j.icheatmasstransfer.2024.108048.

[16] Numerical study on solar heating system with different auxiliary heat sources. Thermal Science and Engineering Progress. 2024. 54: 102845. https://doi.org/10.1016/j.tsep.2024.102845.

[17] Parametric study and optimization of H-type finned tube heat exchangers with honeycomb arrangement using Taguchi method. Applied Thermal Engineering. 2024. 256: 124116. https://doi.org/10.1016/j.applthermaleng.2024.124116.

[18] Experimental study of heat transfer performance in rectangular microchannels enhanced by ultrasound. International Journal of Heat and Mass Transfer. 2024. 228: 125626. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125626.

[19] Experimental study on heat transfer performance enhancement of pulsating heat pipes induced by surfactants. Applied Thermal Engineering. 2024. 245: 122857. https://doi.org/10.1016/j.applthermaleng.2024.122857.

[20] 4E analysis and parameter study of a solar-thermochemical energy storage CCHP system. Energy Conversion and Management. 2024, 301C: 118002. https://doi.org/10.1016/j.enconman.2023.118002.

[21] Parametric analysis on thermal-hydraulic characteristics in variable-direction twisted-oval tube bundle in cross-flow. International Journal of Thermal Sciences. 2024. 108761. https://doi.org/10.1016/j.ijthermalsci.2023.108761.

[22] Molecular dynamics simulation of ultrasound cavitation occurring in Copper-water nanofluid. Physics of Fluids. 2023. 35: 102021. https://doi.org/10.1063/5.0167210.

[23] 4E analysis and multi-objective optimization of compression/ejection transcritical CO2 heat pump with latent thermal heat storage. Journal of Energy Storage. 2023. 72(C): 108475. https://doi.org/10.1016/j.est.2023.108475.

[24] Near-wall cavitation effect: A molecular dynamics study. Langmuir. 2023. https://doi.org/10.1021/acs.langmuir.3c00755.

[25] Investigation on the heat transfer performance of microchannel with combined ultrasonic and passive structure. Applied Thermal Engineering. 2023. 233: 121076. https://doi.org/10.1016/j.applthermaleng.2023.121076.

[26] Studying the performance of phase change heat storage enhanced by ultrasonic energy. Applied Thermal Engineering. 2023. 231: 120920. https://doi.org/10.1016/j.applthermaleng.2023.120920.

[27] Experimental study on the parallel-flow heat pipe heat exchanger for energy saving in air conditioning. Journal of Building Engineering. 2023. 75: 106842. https://doi.org/10.1016/j.jobe.2023.106842.

[28] Performance Analysis of Solar Drying System with Sunlight Transparent Thermally Insulating Aerogels. Energy. 2023. 269: 126698. https://doi.org/10.1016/j.energy.2023.126698.

[29] Energy, environmental and economic assessment of wastewater heat recovery systems in hotel buildings. Applied Thermal Engineering. 2023. 222: 119949. https://doi.org/10.1016/j.applthermaleng.2022.119949.

[30] Studying the advantages of equal curvature curved fin to enhance phase change heat storage. Journal of Energy Storage. 2023. 57: 106212. https://doi.org/10.1016/j.est.2022.106212.

[31] Performance study of transcritical CO2 heat pump integrated with ejector and latent thermal energy storage for space heating. Energy Conversion and Management. 2022. 268: 115979. https://doi.org/10.1016/j.enconman.2022.115979.

[32] Thermal performance analysis and optimization of melting process in a buried tube latent heat storage system. Journal of Energy Storage. 2022. 52(B): 104863. https://doi.org/10.1016/j.est.2022.104863.

[33] Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat. Energy. 2022. 253: 124181. https://doi.org/10.1016/j.energy.2022.124181.

[34] First principles study on photoelectric properties of Tl-doped CuInS2 solar cell materials. International Journal of Electrochemical Science. 2022. 17: 220755. doi: 10.20964/2022.07.58.

[35] Dynamic behavior of near-surface nanobubbles formation and development. Journal of Molecular Liquids. 2022. 358: 119190. https://doi.org/10.1016/j.molliq.2022.119190.

[36] Lattice Boltzmann method for simulation of solid-liquid conjugate boiling heat transfer surface with mixed wettability structures. Physics of Fluids. 2022. 34: 053305 doi: 10.1063/5.0087644.

[37] Experimental and theoretical analysis of the optimal high pressure and peak performance coefficient in transcritical CO2 heat pump. Applied Thermal Engineering. 2022. 210: 118372. https://doi.org/10.1016/j.applthermaleng.2022.118372.

[38] Investigation on the heat transfer and energy-saving performance of microchannel with cavities and extended surface. International Journal of Heat and Mass Transfer. 2022. 189: 122712. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122712.

[39] Analysis of the heat transfer and flow resistance characteristics of helical baffle heat exchangers with twisted oval tube. Journal of Thermal Science. 2022. https://doi.org/10.1007/s11630-022-1581-1.

[40] Proposal and preliminary experimental investigation on a novel efficient integrated system of combined refrigeration, heating, and hot water supply. Energy Conversion and Management. 2022. 253: 115170. https://doi.org/10.1016/j.enconman.2021.115170.

[41] Numerical study of periodical wall vibration effects on the heat transfer and fluid flow of internal turbulent flow. International Journal of Thermal Sciences. 2022. 107367. https://doi.org/10.1016/j.ijthermalsci.2021.107367.

[42] Experimental investigation on heat transfer and flow patterns of pulsating heat pipe assisted by ultrasonic cavitation. International Journal of Heat and Mass Transfer. 2022. 122187. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122187.

[43] Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. International Journal of Heat and Mass Transfer. 2022. 183: 122100. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100.

[44] 平行流热管管内流动与传热的数值模拟研究. 热科学与技术. 2023.

[45] 并联平板重力热管传热性能实验研究. 工程热物理学报. 2022. 43(3): 780-787.

专利

[1] 一种采用超声波强化的聚光光伏太阳能板微通道散热系统. 河南:CN 222928368 U2025-05-30.

[2] 一种利用余热与微通道技术的海上风机叶片防除冰霜系统. 河南: CN 220599941U, 2024-03-15.

[3] 一种新型立式电磁活塞压缩. 河南: CN220337026U, 2024-01-12.

[4] 一种新型立式双缸电磁活塞压缩机. 河南: CN220365687U, 2024-01-09.

[5] 一种新型双缸电磁旋转活塞压缩机. 河南: CN114251262B, 2023-03-28.

[6] 一种基于脉动热管翅片的平疫两用供暖空调系统. 河南: CN218583352U, 2023-03-07.


科研获奖

[1] 第七届、第八届全国大学生过程装备实践与创新大赛“优秀指导教师”(20162017.

[2] 基于R410a制冷剂的新型多联供系统安全可靠性研究. 河南省第四届安全科技成果奖一等奖. 2021.

[3] 精细化工企业典型设备失效机理与工艺安全评价技术. 周口市科学技术进步奖二等奖. 2021.

[4] 小型制冷设备节能共性关键技术及应用. 河南省科学技术进步奖二等奖. 河南省人民政府. 2024. 12. 08.


教改论文

[1] 金课建设中项目式教学模式改革实践. 中国教育技术装备. 2023 10: 107-109.

[2] 《传热学》混合式“金课”建设创新探索. 教学改革. 2023 2: 68-69.

[3] 《工程流体力学基础》第二课堂教学改革研究初探. 国际公关. 2020 98(02):74-75.

教材编著

[1] 过程装备安全技术. 化学工业出版社. 2018.

[2] 过程装备智能制造基础. 化学工业出版社. 2022.


教学及获奖情况

1.基于大学生科创大赛的新工科培养模式探索,教育部高等学校能源动力类专业教学指导委员会,2018.01-2019.12,主持

2.《传热学》混合式金课建设的研究与实践,教育部高等学校能源动力类专业教学指导委员会,2022.01-2023.12,参与

3. 多尺度模拟在能源动力类课程教学中的应用,教育部高等学校能源动力类专业教学指导委员会,2022.01-2023.12,参与4.基于科创比赛的大学生创新实践能力培养研究,郑州大学,主持,2022

主讲课程

工程流体力学基础(+线上MOOC)、工程热力学(+线上MOOC)、高等流体力学、高级制冷热泵技术、能源转换技术与清洁替代能源、化工材料防腐


机械团学汇
Copyright© 2023All Rights Reserved. 郑州大学机械与动力工程学院版权所有