基本信息:
姓名:孙亭亭 籍贯:山东济宁 学历:博士
专业:粒子物理与原子核物理 职称:副教授
研究领域:核结构理论、核天体物理
邮箱:ttsunphy@zzu.edu.cn
通讯地址:河南省郑州市高新区郑州大学物理学院A楼508室
教育经历:
(1)2009.9-2015.1, 北京大学,物理学院,博士,导师:孟杰教授
(2)2005.9-2009.6, 西南大学,物理科学与技术学院,本科
工作经历:
(1)2020.1-今,郑州大学,物理学院,副教授
(2)2016.1-2019.12,郑州大学,物理学院,校聘副教授
(3)2015.10-2016.4,日本理化学研究所,仁科中心,博士后
(4)2015.5-2015. 12,郑州大学,物理工程学院,讲师
个人荣誉:
(1)2024,河南省优秀青年
(2)2021,郑州大学青年骨干教师
(3)2020,郑州大学青年拔尖人才
研究方向:
(1) 奇特原子核的结构性质,包括:连续谱效应、单粒子共振态、形变晕等
(2) 超核的研究,包括:重子重子相互作用、超核结构等
(3) 中子星、核物质
(4) 自旋赝自旋对称性
(5) 协变密度泛函理论,格林函数方法等
主持科研项目:
(1)国家自然科学基金大科学装置联合基金培育项目,U2032141,2021.1-2023.12,60万元,结题;
(2)国家自然科学基金青年项目,11505157,2016.1-2018.12,18万元,结题;
(3)河南省自然科学优秀青年基金项目,2024.1-2026.12,25万元,在研;
(4)广西核物理与核技术重点实验室开放课题,NLK2022-02,2023.1-2024.12,5万元,在研;
(5)河南省自然科学基金面上项目,202300410479,2020.1-2021.12,10万元,结项;
(6)郑州大学优秀青年人才创新团队,2022.1-2024.12,20万元,在研;
(7)郑州大学青年骨干教师培养计划,2021ZDGGJS051,2021.1-2023.12,结项;
(8)郑州大学青年教师基础研究培育基金,JC202041041,2020.8-2021.8,20万元,结项;
(9)郑州大学物理学科推进计划培育项目,2019.8-2022.8,40万元,结项。
学生培养:
(1)在读硕士研究生:
2023级:孙伟、张琦
2022级:黄紫丹
2021级:李丙新
(2)已毕业硕士生:
2020级:霍恩波(赴哈尔滨工业大学读博)、靳浩淼(获国家奖学金)
2019级:孙乾坤(赴上海应用物理研究所读博)
2018级:陈晨(赴兰州大学读博)、王雅甜
2017级:钱龙、陈程
2016级:刘子鑫(获国家奖学金、赴近物所读博)
2015级:任素红(获国家奖学金)
代表性论文:(按时间倒序排列,*代表通讯作者)
1. T.-T. Sun, and Z. P. Li*, Continuum relativistic Hartree-Bogoliubov theory for weakly bound deformed nuclei in Green’s function method, submitted to PRC.
2. T.-T. Sun, Y. Tanimura, H. Sagawa, and E. Hiyama*, CSB effect in single-hypernuclei, submitted to PLB.
3. T.-T. Sun*, and Z. P. Li, Uniform descriptions of pseudospin symmetries in bound and resonant states, arXiv:2311.14765, submitted to PLB.
4. T.-T. Sun*, B.-X. Li, and K. Liu, Probing spin and pseudospin symmetries in deformed nuclei by Green’s function method, PRC 109, 014323 (2024).
5. T.-T. Sun*, Z. P. Li*, and P. Ring*, Conservation and breaking of pseudospin symmetry, Phys. Lett. B 847, 138320 (2023).
6. E.-B. Huo, K.-R. Li, X. Y. Qu, Y. Zhang, and T.-T. Sun*, Continuum Skyrme Hartree-Fock-Bogoliubov theory with Green’s function method for neutron-rich Ca, Ni, Zr, Sn isotopes, Nucl. Sci. Tech. 34, 105 (2023).
7. C.-J. Xia*, H.-M. Jin, and T.-T. Sun, Quarkyonic matter and quarkyonic stars in an extended relativistic mean field, Phys. Rev. D 108, 054013 (2023).
8. Q.-K. Sun, T.-T. Sun*, W. Zhang, S.-S. Zhang, and C. Chen, Possible shape coexistences in the odd-A Ne isotopes and the impurity effects of hyperon, Chin. Phys. C 46(7), 074106 (2022).
9. H.-M. Jin, C.-J. Xia*, T.-T. Sun*, and G.-X. Peng*, Quark condensate and chiral symmetry restoration in neutron stars, Phys. Lett. B 829, 137121 (2022).
10. Y. Tanimura, H. Sagawa, T.-T. Sun, and Emiko Hiyama*, hypernuclei and , and the two-body interaction, Phys. Rev. C 105, 044324 (2022).
11. Y.-T. Wang, and T.-T. Sun*, Searching for single-particle resonances with the Green’s function method, Nucl. Sci. Tech. 32, 46 (2021).
12. W. Zhang, W.-L. Lv, and T.-T. Sun*, Shell corrections with finite temperature covariant density functional theory, Chin. Phys. C 45, 024107 (2021).
13. C. Chen, Q.-K. Sun, Y.-X. Li, and T.-T. Sun*, Possible shape coexistence in Ne isotopes and the impurity effect of hyperon, Sci. China-Phys. Mech. Astron. 64(8), 282011(2021).
14. T.-T. Sun*, L. Qian, C. Chen, P. Ring, and Z. P. Li*, Green's function method for the single-particle resonances in a deformed Dirac equation. Phys. Rev. C 101,014321 (2020).
15. C. Chen, Z. P. Li, Y.-X. Li, and T.-T. Sun*, Study of single-particle resonant states with Green’s function method, Chin. Phys. C 44,084105 (2020).
16. T.-T. Sun, S.-S. Zhang, Q.-L. Zhang, and C.-J. Xia*, Strangeness and resonance in compact stars with relativistic-mean-field models, Phys. Rev. D 99, 023004 (2019).
17. T.-T. Sun*, Z.-X. Liu, L. Qian, B. Wang, and W. Zhang, Continuum Skyrme Hartree-Fock-Bogoliubov theory with Green’s function method for odd-A nuclei, Phys. Rev. C 99, 054316 (2019).
18. T.-T. Sun*, W.-L. Lu, L. Qian, and Y.-X. Li, Green’s function method for the spin and pseudospin symmetries in the single-particle resonant states, Phys. Rev. C 99, 034310 (2019).
19. C.-J. Xia*, G.-X. Peng*, T.-T. Sun*, W.-L. Guo*, D.-H. Lu*, and P. Jaikumar*, Interface effects of strange quark matter with density dependent quark masses, Phys. Rev. D 98, 034031 (2018).
20. Z.-X. Liu, C.-J. Xia, W.-L. Lu, Y.-X. Li, J. N. Hu*, and T.-T. Sun*, Relativistic mean-field approach for , , and hypernuclei, Phys. Rev. C 98,024316 (2018).
21. T.-T. Sun, C.-J. Xia*, S.-S. Zhang, and M. S. Smith, Massive neutron stars and -hypernuclei in relativistic mean field models, Chin. Phys. C 42, 025101 (2018).
22. W.-L. Lu, and T.-T. Sun*, Spin and pseudospin symmetries in hypernuclei, Nucl. Phys. Rev. 35, 531(2018).
23. Z.-X. Liu, C.-J. Xia, and T.-T. Sun*, Relativistic mean-field approach for , , and hypernuclei, Nucl. Phys. Rev. 35, 523 (2018).
24. T.-T. Sun*, W.-L. Lu, and S.-S. Zhang, Spin and pseudospin symmetries in the single-spectrum, Phys. Rev. C 96, 044312(2017).
25. W.-L. Lu, Z.-X. Liu, S.-H. Ren, W. Zhang, and T.-T. Sun*, (Pseudo)spin symmetry in the single-neutron spectrum ofhypernuclei, J. Phys. G: Nucl. Part. Phys., 44, 125104 (2017).
26. S.-H. Ren, T.-T. Sun*, and W. Zhang, Green's function relativistic mean field theory for Lambda hypernuclei, Phys. Rev. C, 95, 054318 (2017).
27. M. Shi, X.-X. Shi, Z.-M. Niu, T.-T. Sun, and J.-Y. Guo*, Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei, Eur. Phys. J. A 53, 40 (2017).
28. T.-T. Sun, E. Hiyama*, H. Sagawa, H.-J. Schulze, and J. Meng, Mean field approaches for hypernuclei and current experimental data, Phys. Rev. C, 94, 064319(2016).
29. T.-T. Sun, Z.-M. Niu, and S. Q. Zhang*, Single-proton resonant state and the isospin dependence investigated by the Green's function relativistic mean field theory, J. Phys. G: Nucl. Part. Phys. 43,045107 (2016).
30. 孙亭亭*,格林函数协变密度泛函理论及其应用, 中国科学:物理学 力学 天文学, 46, 012006(2016).
31. T.-T. Sun, S. Q. Zhang, Y. Zhang, J. N. Hu, and J. Meng*, Green's function method for single-particle resonant states in relativistic mean field theory, Phys. Rev. C 90, 054321(2014).
32. T.-T. Sun, B. Y. Sun, and J. Meng*, BCS-BEC crossover in nuclear matter with the relativistic Hartree-Bogoliubov theory, Phys. Rev. C 86, 014305(2012).