主要论著 [1] Wang Heshan, Wu Q M Jonathan, et al. Echo state network with a global reversible autoencoder for time series classification, Information Sciences, 2021, 570: 774-768.(IF=6.795,中科院一区Top) [2] Wang Heshan, Wu Q M Jonathan, Xin Jianbin, et al. Optimizing Deep Belief Echo State Network with a Sensitivity Analysis Input Scaling Auto-Encoder algorithm. Knowledge-Based Systems, 2020, 191:5.(IF=8.038, 中科院一区Top) [3] Wang Heshan, Ni Chunjuan, Yan Xuefeng. Optimizing the echo state network based on mutual information for modeling fed-batch bioprocesses. Neurocomputing, 2017, 225: 111-118. (中科院二区,IF=3.317) [4] Wang Heshan, Wu Q M Jonathan, Wang J, et al. Optimizing simple deterministically constructed cycle reservoir network with a Redundant Unit Pruning Auto-Encoder algorithm. Neurocomputing, 2019, 356: 184-194. (中科院二区,IF=4.072) [5] Wang Dongshu, Chen Shuli, Hu Yuhang, Liu Lei, Wang Heshan*(通讯作者), et al. Behavior decision of mobile robot with a neurophysiologically motivated reinforcement learning model, IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(1): 219-233.(中科院二区,IF=3.379) [6] Xin Jianbin, Yu Benyang, D'Ariano Andrea, WangHeshan*(通讯作者),et al. Time-dependent rural postman problem: time-space network formulation and genetic algorithm. Operational Research, 2021:1-30. (中科院4区,IF=2.410) [7] Wang Dongshu , Yang Kai, Wang Heshan*(通讯作者), Liu Lei. Behavioral Decision-Making of Mobile Robot in Unknown Environment with the Cognitive Transfer. Journal of Intelligent & Robotic Systems, 2021, 103(1):1-22. (中科院3区,IF=2.646) [8] Wang Dongshu, Yang Kai, Liu Lei, Wang Heshan*(通讯作者), An Incremental Learning Model for Mobile Robot: From short-term memory to long-term memory, IEEE Transactions on Artificial Intelligence, DOI:10.1109/TAI.2021.3139264. (未分区) [9] Wang Heshan, Xuefeng Yan*. Reservoir Computing with Sensitivity Analysis Input Scaling Regulation and Redundant Unit Pruning for Modeling Fed-Batch Bioprocesses. Industrial & engineering chemistry research(,2014, 53(16):6789-6797. (中科院二区,IF=2.567) [10] Wang Heshan, Xuefeng Yan*, Improved Simple Deterministically Constructed Cycle Reservoir Network with Sensitive Iterative Pruning Algorithm. Neurocomputing, 2014, 145(18):353–362. (中科院分区二区,IF=2.392) [11] Wang Heshan, Xuefeng Yan*.Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowledge-based systems, 2015, 86:182-193. (中科院二区,IF=3.325) [12] Wang Heshan, Xuefeng Yan*. Chlorophyll-A Predicting Model Based On Dynamic Neural Network. Applied Artificial Intelligence, 2015, 29(10): 962-978. (中科院3区) [13] Wang Heshan, Huang J, Yan X. Improved cycle reservoir with regular jump networks with simple disjunction algorithm[C]// Chinese Automation Congress. 2015:809-814.. [14] 张衡, 王河山(通讯作者)*,等. 基于互信息和Just-in-Time优化的回声状态网络. 郑州大学学报(工学版), 2017(5):1-6. |
专利 (1) 王东署; 胡宇航; 罗勇; 辛健斌; 王河山; 马天磊; 贾建华; 张方方; 陈书立 ; 一种机器人控制方法 及设备, 2020-6-17, 中国, ZL202010552467.2 (专利) (2) 王东署; 杨凯; 罗勇; 辛健斌; 王河山; 马天磊 ; 基于发育网络的移动机器人运动方向预先决策方法 , 2021-6-8, 中国, CN201910255732.8 (专利) (3) 辛健斌; 孟闯; 彭金柱; 王东署; 王河山; 张方方 ; 一种智能的自动化集装箱码头节能综合调度方法 , 2020-3-16, 中国, CN202010180949.X (专利) (4) 朱晓东; 李广; 王杰; 马天磊; 张方方; 王河山; 王东署; 王书锋 ; 一种工业过程变量趋势异常检测 方法及装置, 2017-3-30, 中国, ZL201710203038.2 (专利) (5) 王杰; 王河山; 禹蒙蒙; 王列珂; 朱一凡; 李鹏; 宋一帆; 李自豪; 刘向晴 ; 一种智能区域路灯照明 系统, 2017-5-25, 中国, ZL201720590425.1 (专利) |