张东伟

作者: 时间:2020-01-03 点击数:


个人简介

张东伟,河南开封人,副教授,硕士生导师,2013年获西安交通大学动力工程及工程热物理专业博士学位。郑州大学动力工程及工程热物理专业博士后,美国堪萨斯大学访问学者江苏省双创博士”技术人才,河南省科学技术协会青年托举人才,郑州大学青年骨干教师。从事热力系统能量转换、制冷热泵技术和强化传热技术方面的研究,承担国家自然科学基金1河南省高等学校重点科研项目1高等学校能源动力类新工科研究与实践项目1项,江苏省绿色过程装备重点实验室开放课题1项,参与国家自然科学基金项目3项、承担和参与地方及企业合作项目9项。发表论文50篇,教研论文近10篇,参编专业教材2部,承担International Journal of Heat and Mass Transfer Applied Thermal EngineeringInternational Journal of Thermal SciencesPhysics of Fluids多个期刊的审稿工作

指导研究生获得国家奖学金、三好研究生、优秀毕业生、中国制冷空调竞赛河南省二等奖,毕业生有多人进入上海交通大学、西安交通大学、重庆大学等继续攻读博士学位;指导本科生在国际期刊发表学术论文,申请发明专利;指导本科生获美国数学建模竞赛一等奖、二等奖多项,获国家级科技创新比赛特等奖、一等奖和二等奖多项,多名本科生获得科研训练和实践创新基金项目资助。

联系电话13526854826;      E-mailzhangdw@zzu.edu.cn

研究领域及方向

1. 传热传质强化节能技术

2. 热力系统能量转换技术

3. 新型制冷热泵技术

4. 固体废物资源化污染控制

近年来承担的科研项目

1. 国家自然科学基金委员会,青年项目,51706208,超声波激励下脉动热管的启动特性及多场耦合强化的机理研究,2018.01-2020.12,主持

2. 江苏省绿色过程装备重点实验室,开放课题基金项目,压缩喷射式跨临界CO2热泵系统研究2021.01-2022.12,主持

3. 河南省科学技术协会,青年人才托举项目,2020HYTP023带回热器的跨临界二氧化碳热泵-热水系统综合性能的实验研究2020.01-2021.12,主持

4. 河南省教育厅,高等学校重点科研项目16A480011多物理场耦合作用下超声波强化传热机理与实验研究2016.01-2017.12,主持

5. 江苏省科技厅,“双创博士”科技副总项目,2016.01-2017.12,主持

6. 郑州大学青年骨干教师培养计划,超声波强化微通道换热的空化效应及多场耦合机理研究,2021.01-2023.12,主持

7. 郑州大学培育基金项目,超声波强化微通道相变换热的空化效应及多场耦合机理研究,2021,主持

8. 垃圾焚烧电厂烟气污染物处理系统开发,横向项目,2023-2024,主持

9. 二噁英低温裂解微观过程技术研究,横向项目,2023,主持

10. 20万吨/年苯加氢项目》节能评估,横向项目,2022,主持


近年来承担和参与的教学改革项目

1. 教育部高等学校能源动力类专业教学指导委员会研究与实践项目,高等学校能源动力类新工科研究与实践项目,NDXGK2017Y-66基于大学生科创大赛的新工科培养模式探索2018.01-2019.12,主持

2. 郑州大学教学改革类项目,基于科创比赛的大学生创新实践能力培养研究,2022.08-2024.07,主持

3. 教育部高等学校能源动力类教指委教学研究与实践项目NSJZW2021Y-44,《传热学》混合式金课建设的研究与实践,2022.01-2023.12,参与

4. 教育部高等学校能源动力类教指委教学研究与实践项目NSJZW2021Y-112,多尺度模拟在能源动力类课程教学中的应用, 2022.01-2023.12,参与

5. 河南省本科高等学校精品在线开放课程项目《传热学》,2021,参与


近五年来发表的代表性论文及成果

[1] 4E analysis and multi-objective optimization of compression/ejection transcritical CO2 heat pump with latent thermal heat storage. Journal of Energy Storage. 2023. 72(C): 108475. https://doi.org/10.1016/j.est.2023.108475

[2] Near-wall cavitation effect: A molecular dynamics study. Langmuir. 2023. https://doi.org/10.1021/acs.langmuir.3c00755.

[3] Investigation on the heat transfer performance of microchannel with combined ultrasonic and passive structure. Applied Thermal Engineering. 2023. 233: 121076. https://doi.org/10.1016/j.applthermaleng.2023.121076.

[4] Studying the performance of phase change heat storage enhanced by ultrasonic energy. Applied Thermal Engineering. 2023. 231: 120920. https://doi.org/10.1016/j.applthermaleng.2023.120920.

[5] Experimental study on the parallel-flow heat pipe heat exchanger for energy saving in air conditioning. Journal of Building Engineering. 2023. 75: 106842. https://doi.org/10.1016/j.jobe.2023.106842.

[6] Performance Analysis of Solar Drying System with Sunlight Transparent Thermally Insulating Aerogels. Energy. 2023. 269: 126698. https://doi.org/10.1016/j.energy.2023.126698.

[7] Energy, environmental and economic assessment of wastewater heat recovery systems in hotel buildings. Applied Thermal Engineering. 2023. 222: 119949. https://doi.org/10.1016/j.applthermaleng.2022.119949.

[8] Studying the advantages of equal curvature curved fin to enhance phase change heat storage. Journal of Energy Storage. 2023. 57: 106212. https://doi.org/10.1016/j.est.2022.106212.

[9] Performance study of transcritical CO2 heat pump integrated with ejector and latent thermal energy storage for space heating. Energy Conversion and Management. 2022. 268: 115979. https://doi.org/10.1016/j.enconman.2022.115979.

[10] Thermal performance analysis and optimization of melting process in a buried tube latent heat storage system. Journal of Energy Storage. 2022. 52(B): 104863. https://doi.org/10.1016/j.est.2022.104863.

[11] Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat. Energy. 2022. 253: 124181. https://doi.org/10.1016/j.energy.2022.124181.

[12] First principles study on photoelectric properties of Tl-doped CuInS2 solar cell materials. International Journal of Electrochemical Science. 2022. 17: 220755. doi: 10.20964/2022.07.58.

[13] Dynamic behavior of near-surface nanobubbles formation and development. Journal of Molecular Liquids. 2022. 358: 119190. https://doi.org/10.1016/j.molliq.2022.119190.

[14] Lattice Boltzmann method for simulation of solid-liquid conjugate boiling heat transfer surface with mixed wettability structures. Physics of Fluids. 2022. 34: 053305 doi: 10.1063/5.0087644.

[15] Experimental and theoretical analysis of the optimal high pressure and peak performance coefficient in transcritical CO2 heat pump. Applied Thermal Engineering. 2022. 210: 118372. https://doi.org/10.1016/j.applthermaleng.2022.118372.

[16] Investigation on the heat transfer and energy-saving performance of microchannel with cavities and extended surface. International Journal of Heat and Mass Transfer. 2022. 189: 122712. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122712.

[17] Analysis of the heat transfer and flow resistance characteristics of helical baffle heat exchangers with twisted oval tube. Journal of Thermal Science. 2022. https://doi.org/10.1007/s11630-022-1581-1.

[18] Proposal and preliminary experimental investigation on a novel efficient integrated system of combined refrigeration, heating, and hot water supply. Energy Conversion and Management. 2022. 253: 115170. https://doi.org/10.1016/j.enconman.2021.115170.

[19] Numerical study of periodical wall vibration effects on the heat transfer and fluid flow of internal turbulent flow. International Journal of Thermal Sciences. 2022. 107367. https://doi.org/10.1016/j.ijthermalsci.2021.107367.

[20] Experimental investigation on heat transfer and flow patterns of pulsating heat pipe assisted by ultrasonic cavitation. International Journal of Heat and Mass Transfer. 2022. 122187. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122187.

[21] Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. International Journal of Heat and Mass Transfer. 2022. 183: 122100. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100.

[22] Parametric investigation and correlation development for thermal-hydraulic characteristics of honeycomb 4H-type finned tube heat exchangers. Applied Thermal Engineering. 2021. 199: 117542. https://doi.org/10.1016/j.applthermaleng.2021.117542.

[23] Effect of ultrasonic on the enhancement of heat transfer for pulsating heat pipe. International Journal of Energy Research. 2021. 45(13): 19351-19362. DOI: https://doi.org/10.1002/er.7041.

[24] Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe. International Journal of Heat and Mass Transfer. 2021. 168(15): 120856. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120856.

[25] Performance evaluation of cascaded storage system with multiple phase change materials. Applied Thermal Engineering. 2021. 185: 116384. https://doi.org/10.1016/j.applthermaleng.2020.116384.

[26] Numerical Simulation on Pulsating Heat Pipe with Connected-path. Journal of Enhanced Heat Transfer. 2021. 28(2): 1-17. DOI: 10.1615/JEnhHeatTransf.2020035771.

[27] A review on start-up characteristics of the pulsating heat pipe. Heat and Mass Transfer. 2021. 57:723-735. https://doi.org/10.1007/s00231-020-02998-4.

[28] Ultrasound-assisted enhancement of heat transfer in staggered pipes. Heat Transfer Research. 2020. 51(14): 1273-1288. DOI: 10.1615/HeatTransRes.2020034607.

[29] Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration. International Communications in Heat and Mass Transfer. 2020. 115: 104523. https://doi.org/10.1016/j.icheatmasstransfer.2020.104523.

[30] Experimental and numerical study on heat transfer of gas cooler under the optimal discharge pressure. International Journal of Refrigeration. 2020. 112: 229-239. https://doi.org/10.1016/j.ijrefrig.2019.12.026.

[31] Numerical analysis on thermoacoustic prime mover. Journal of Sound and Vibration. 2019. 463:114946. DOI:10.1016/j.jsv.2019.1149.

[32] Experimental study on the effect of compressor frequency on the performance of transcritical CO2 heat pump system with regenerator. Applied Thermal Engineering. 2019. 150:1216-1223. DOI:10.1016/j.applthermaleng.2019.01.091.

[33] Analysis and comparison of influence factors of hot water temperature in transcritical CO2 heat pump water heater: An experimental study. Energy Conversion and Management. 2019. 198: 111836. DOI: 10.1016/j.enconman.2019.111836.

[34] 平行流热管管内流动与传热的数值模拟研究. 热科学与技术. 2023.

[35] 并联平板重力热管传热性能实验研究. 工程热物理学报. 2022. 43(3): 780-787.

[36] 基于CFD的电动汽车驱动电机冷却流道对比研究. 郑州大学学报. 2021 42(6): 68-73.

[37] 平行流热管管内两相流动可视化实验研究. 化工学报. 2021. 72(5): 2506-2513.

[38] 基于simscape的汽车制冷系统建模及仿真. 低温与超导, 2020. 49(9), 5: 61-65.

[39] 回热对跨临界CO2热泵系统性能影响的实验研究. 工程热物理学报. 2020 41(01):188-197.

[40] 脉动热管强化传热技术研究进展. 科学技术与工程. 2019 19(21): 1-7.

[41] 不同结构下两弯头脉动热管的数值模拟. 化工学报, 2019, 70(S2): 244-249.

[42] 带回热器的跨临界CO2空气源热泵系统性能实验研究. 工程热物理学报. 2019 40(11): 2474-2477.

[43] 气冷器出口状态对跨临界CO2热泵系统性能影响的研究. 高校化学工程学报. 2019 (5):1056-1063.

专利

  [1] 一种新型双缸电磁旋转活塞压缩机. 河南: CN114251262B, 2023-03-28.

[2] 一种基于脉动热管翅片的平疫两用供暖空调系统. 河南: CN218583352U, 2023-03-07.

[3] 一种混合动力汽车发动机和电池余热回收系统. 河南: CN215213718U, 2021-12-17.

[4] 一种用于大功率充电桩的新型脉动热管翅片联合散热结构. 河南: CN215204475U, 2021-12-17.

[5] 一种基于高温沙粒的余热回收冷热电联供系统. 河南: CN204536088, 2021-10-29.

[6] 一种用于地下空间的太阳能除湿系统. 河南:CN202870039U, 2021-04-02.

[7] 基于脉动热管的混凝土冷却系统. 河南:CN211714597U2020-10-20.

教材编著

[1] 过程装备安全技术. 化学工业出版社. 2018.

[2] 过程装备智能制造基础. 化学工业出版社. 2022.

主讲课程

工程流体力学基础(线下教学+MOOC)、工程热力学(MOOC)、高等流体力学、高级制冷热泵技术、能源转换技术与清洁替代能源、化工材料防腐


荣誉与奖励

[1] 第七届、第八届全国大学生过程装备实践与创新大赛“优秀指导教师”(20162017

[2] 基于R410a制冷剂的新型多联供系统安全可靠性研究. 河南省第四届安全科技成果奖一等奖. 2021

[3] 精细化工企业典型设备失效机理与工艺安全评价技术. 周口市科学技术进步奖二等奖. 2021


机械团学汇
Copyright© 2023All Rights Reserved. 郑州大学机械与动力工程学院版权所有