李松杰
职称:教授 博导、硕导
————————————
李松杰 女 博士
毕业院校:北京科技大学
工作单位:化工学院
职称/职务:教授 导师类别:博导,硕导
所属一级学科:化学工程与技术
电子邮箱: songjie@zzu.edu.cn
招生一级学科:化学工程与技术
招生二级学科: 化学工艺、化学工程、 应用化学、材料化工
对考生要求: 勤奋刻苦 虚心踏实
导师简介
河南南阳人,北京科技大学与日本国立物质材料研究所联合培养博士;2011-2014年于日本国立物质材料研究所,博士后;兼任教育部工程教育专业认证协会秘书;挂职江苏省靖江市生祠镇党委副书记;日本东北大学访问学者;郑州大学校级青年骨干教师;郑州大学杰出青年人才创新团队;河南省高等学校青年骨干教师;河南省自然科学基金优青资助;河南省教育厅学术技术带头人。
研究方向
1. 电化学
2. 新型光催化材料设计与制备
3. 环境中材料氢致断裂敏感性研究
主要成果
主持国家自然科学基金项目等纵向四项,主持横向项目六项;发表SCI收录论文30余篇。
主持代表性论文
(1) Pearlite formation via martensite. Composites Part B. 2022, https://doi.org/10.1016/j.compositesb.2022.109859.
(2) Dependence of {112}<111>-type twin density on carbon content in Fe-C martensite. Journal of Materials Research and Technology. 2022, 18: 5045-5052.
(3) Self-propagating high-temperature synthesis method reduces CO2 to porous graphene as high-performance electrochemical electrode materials. Journal of alloys and compounds. 2022, 900, 163552.
(4) Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries. Journal of Materials Science & Technology, 2022, 100, 216-223.
(5) Direct Z-scheme N-doped TiO2/MoS2 Heterojunction Photocatalyst for Photodegradation of Methylene Blue under Simulated Sunlight, ChemistrySelect, 2021, 6, 181 –186.
(6) Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithiumesulfur batteries. Electrochimica Acta, 2020, 340:135991.
(7) Hydrogen embrittlement behavior of ultrahigh strength mooring chain steel evaluated by the slow strain rate test. International Journal of Electrochemical Science, 2019, 14(3):2705-2713.
(8) Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron. Materials Science and Technology, 2019, 35(11):1329-1336.
(9) Study of the hydrogen delayed fracture of mooring chain steel using strain rate testing. International Journal of Electrochemical Science, 2019,14(9):9221-9230
(10) Preparation and adsorption properties of TiO2/MoS2 nanocomposites. Mater. Res. Express, 2019,6:055046
(11) Metastable ω′-Fe3C carbide formed during ω-Fe3C particle coarsening in binary Fe-C alloys. J. Appl. Phys., 2019, 125, 175112.
(12) Mo and P co-doped Ba5Ta4O15 for hydrogen evolution under solar light. 2018, Phys. B, 541, 1-5.
(13) Highly efficient NaTaO3 for visible light photocatalysis predicted from first principles. Sol Energ Mat Sol C, 2016, 149, 97-102.
(14) Band gap engineering of Ba5Nb4O15 for efficient water splitting under visible light. J. Alloy. Comd, 2015, 644, 757-762.
(15) Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light. Int. J. Hydrogen Energy, 2015, 40(45), 15503-15509.
(16) Morphology and Crystallography of Ausferrite in Austempered Ductile Iron. Metals, 2017,7(7):238.
(17) Hydrogen entry behavior into iron and steels under atmospheric corrosion. ISIJ International, 2013, 53(6), 1062-1069.
(18) 大気腐食による鉄と鋼への水素侵入挙動. 鉄と鋼,2013, 99(11):651-658.
(19) Evaluation of delayed fracture property of outdoor-exposed high strength AISI 4135 steels. Corrosion Science, 2010, 52(10):3198-3204.
(20) Electrochemical Hydrogen Permeation Tests under Conventional Potentiostatic Hydrogen Charging Conditions for Hydrogen Embrittlement Study. ECS Transactions, 2017,75 (29) 23-31.
(21) Electrochemical hydrogen permeation test under controlled temperature and humidity after outdoor exposure at Beijing, Chongqing and Okinawa. ISIJ International, 2016, 56(3), 436-443.
(22) Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study. Corrosion reviews, 2016, 34(1-2), 103-112.
(23) 北京,重慶および沖縄に室外暴露した試験片を用いた温湿度制御下の電気化学的水素透過試験. 鉄と鋼,2017, 103 (2): 93-100
(24) Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion. Electrochim Acta, 2011, 56(4), 1799-1805.
(25) Studies of evaluation of hydrogen embrittlement property of high-strength steels with consideration of the effect of atmospheric corrosion. Metallurgical and Materials Transactions A, 2013, 44A(3), 1290-1300.
(26) Constant-load delayed fracture test of atmospherically corroded high strength steels. Applied Surface Science, 2011, 257(19), 8275-8281.