姓名:王楠
职务/职称:副研究员
研究领域:谱方法和虚拟元、偏微分方程数值解、保结构算法及数值分析;
刚性问题和奇性问题
邮箱:nwang@zzu.edu.cn
简要经历
2010.09-2014.07,河南财经政法大学,数学与信息科学学院,学士
2017.09-2018.12, 美国布朗大学,应用数学系,联合培养博士生
2014.09-2019.07,华中科技大学,数学与统计学院,博士
2019.07-2021.06,郑州大学,数学与统计学院,博士后/助理研究员
2021.06-至今,郑州大学,数学与统计学院
主要项目
1.国家自然科学基金青年项目,几类分数阶发展方程保系统耗散型数值方法及其理论研究,结项,主持。
2.第66批中国博士后科学基金面上项目,几类非线性分数阶发展方程的高效数值方法,结项,主持。
3.河南省博士后科研项目(一等资助),几类非线性分数阶偏微分方程的高效算法研究,结项,主持。
奖励
2022年和2023年分别获河南省优秀科技论文一等奖和二等奖,第一作者
2022年独立指导本科生获得全国大学生数学建模竞赛河南省一等奖
论文
(1)Nan Wang, Chengming Huang*. An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations, Computers and Mathematics with Applications, 2018, 75: 2223-2242.
(2)Nan Wang, Zhiping Mao*, Chengming Huang, George Em Karniadakis. A spectral penalty method for two-sided fractional differential equations with general boundary conditions, SIAM Journal on Scientific Computing, 2019, 41: 1840-1866.
(3)Mingfa Fei, Nan Wang*, Chengming Huang, Xiaohua Ma. A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation, Applied Numerical Mathematics, 2020, 153: 399-411.
(4)Nan Wang, Mingfa Fei*, Chengming Huang, Guoyu Zhang, Meng Li. Dissipation- preserving Galerkin-Legendre spectral methods for two-dimensional fractional nonlinear wave equations, Computers and Mathematics with Applications, 2020,80:617-635.
(5)Nan Wang,Dongyang Shi*, Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain,Mathematics and Computers in Simulation, 2021,185:696-718.
(6)Nan Wang,Meng Li*, Chengming Huang, Unconditional Energy Dissipation and Error Estimates of the SAV Fourier Spectral Method for Nonlinear Fractional Generalized Wave Equation,J. Sci. Comput., 2021,88.
(7)Nan Wang,Meng Li*, Unconditional error analysis of a linearized BDF2 virtual element method for nonlinear Ginzburg-Landau equation with variable time step,Commun. Nonlinear Sci. Numer. Simul., 2023, 116, 106889.
(8)Meng Li, Lingli Wang, Nan Wang *,Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations,Applied Numerical Mathematics, 2023,18,378–410.