姓名:张旭
职务/职称:讲师
研究领域:偏微分方程,具体从事流体方程及其边界层方程适定性,Boltzmann方程流体极限及其边界层方程适定性研究。所研究方向对实分析、偏微分方程和泛函分析有极高要求,对概率论和几何有较高要求,对其他领域要求一般。
邮箱:xuzhang.maths@139.com,xuzhang889@zzu.edu.cn
简要经历
2018.10- 至今 郑州大学,数学与统计学院
2016.07--2018.06 武汉大学,博士后
2014.11--2016.06 Université de Rouen(法国),博士
2010.09--2016.06 厦门大学,应用数学,博士
2006.09--2010.07 郑州大学,数学与应用数学,学士
主要项目
青年基金,Boltzmann方程及其耦合模型的扩散极限研究。
论文
[1] N. Jiang, Y.-L. Luo and X. Zhang, Stability of equilibria to the model for non-isothermal electrokinetics. Comm. Math.Sci 19 (2021), pp. 687-720.
[2] N. Jiang and X. Zhang, The Boltzmann equation with incoming boundary condition: global solutions and Navier-Stokes limit. SIAM J. Math. Anal. 51 (2019), 2504–2534.
[3] N. Jiang and X. Zhang, Global renormalized solutions and Nvier–Stokes limit of the Boltzmann equation with incoming boundary condition for long range interaction. J. Differential Equations 266 (2019), 2597–2637.
[4] C.-J. Xu and X. Zhang, Long time well-posedness of Prandtl equations in Sobolev space. J. Differential Equations 263(2017), 8749–8803.
[5] X. Zhang and Z. Tan, The global wellposedness of the 3d heat-conducting viscous incompressible fluids with bounded density.Nonlinear Analysis: Real World Applications 22 (2015), 129–147.
[6] Z. Tan and X. Zhang, Decay estimates of the coupled chemotaxis–fluid equations in r3. Journal of Mathematical Analysis and Applications 410 (2014), 27–38.
[7] Z. Tan, X. Zhang and H. Wang, Asymptotic behavior of navier-stokes-korteweg with friction in R3 . Discrete and Continuous Dynamical Systems 34 (2014), 2243–2259.
[8] X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of korteweg type in R 3 . Comm. Math.Sci 12 (2014), 1437–1456.
[9] Z. Tan and X. Zhang, Decay of the non-isentropic navier–stokes–poisson equations. Journal of Mathematical Analysis and Applications 400 (2013), 293–303.
[10] Z. Tan, Y. Wang and X. Zhang, Large time behavior of solutions to the non-isentropic compressible navier-stokes-poisson system in R3 . Kinetic & Related Models 5 (2012).