1. 基本情况
姓 名:王 伟
出生年月:1990年10月
职 称:副教授,硕士生导师
学 位:工学博士
电子邮箱:w_wei2013@zzu.edu.cn
研究之门ResearchGate:https://www.researchgate.net/profile/Wei-Wang-67
所属实验室:纳米光机电与生物医学工程实验室(http://www.wei-lab.top/)
招生信息:欢迎具有力学、机械、材料背景的同学报考硕士研究生
欢迎大二、大三年级学生参与本科生研究课题
2. 研究领域
(1).振动能量俘获及应用
(2). 智能材料与结构
(3). 精密仪器与智能装备
(4). 非线性振动与系统辨识
(5). 柔性压电/热电材料
3. 教育及工作经历
2023.03-至 今:郑州大学,力学与安全工程学院,副教授
2020.06-2023.03:郑州大学,力学与安全工程学院,讲师、校聘副教授
2016.03-2020.03:西安交通大学,机械工程,工学博士,导师:曹军义 教授
2018.01-2019.12:多伦多大学,机械与工业工程系,联合培养博士生(CSC),导师:Prof. Hani E. Naguib
2013.09-2016.02:西安交通大学,机械制造及其自动化,工学硕士,导师:曹军义 教授
2009.09-2013.06:吉林大学,工业工程,工学学士
4. 科研项目
1. 国家自然科学基金青年项目:非对称多稳态压电能量俘获的非线性机理及优化控制策略(主持,No. 12202400,30万元)
2. 河南省重点研发与推广专项(科技攻关):人体运动的柔性能量俘获及步态监测方法研究 (主持,No. 212102310248,10万元)
3. 中国博士后科学基金面上项目:非对称多稳态压电能量俘获的非线性机理及优化控制(主持,No. 2020M682336,直接经费8万元,河南省配套8万元)
4. 郑州大学求是教师科研启动经费:非对称多稳态压电能量俘获的非线性机理及优化控制(主持,12万元)
5. 现代设计及转子轴承系统教育部实验室开放课题:轴承自供能监测的智能压电结构设计(主持)
5. 荣誉奖励
(1). 2023年度陕西高等学校科学技术研究优秀成果一等奖(4/5)
(2). 2022年4月博士学位论文被评为“西安交通大学优秀博士学位论文”
(3). 2019年11月荣获“西安交通大学优秀博士研究生标兵”
(4). 2017年5月荣获国际物理学会最佳海报奖Institute of Physics Best Poster Prize(第一完成人)
(5). 2016年12月荣获GE基金会科技创新大赛二等奖(独立完成人,全国第3名)
(6). 2016年11月荣获“陕西省第二届研究生创新成果展”一等奖(第二完成人)
6. 科研成果
1. Wang W., Cao J.*, Zhang N., Lin J., Liao W. H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Conversion and Management, 2017, 132: 189-197.
2. Wang W.*, Zhang Y., Wei Z.H., Cao J. Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester. Energy, 2022, 261: 125311.
3. Wang W., Cao J.*, Bowen C. R., Zhou S. X., Lin J. Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy, 2017, 118: 221-230.
4. Wang W., Cao J.*, Mallick D., Roy S., Lin J. Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters. Mechanical Systems and Signal Processing, 2018, 108: 252-261.
5. Wang W.*, Li B., Liu S., Wei Z.H.*. Bifurcation analysis and nonlinear dynamics of a rolling magnet multistable electromagnetic energy harvester. Communications in Nonlinear Science and Numerical Simulation, 2023, 118, 107027.
6. Wang W., Cao J.*, Bowen C. R., Inman D. J., Lin J. Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations. Applied Physics Letters, 2018, 112(21): 213903.
7. Wang W., Jiao S., Cao J., Naguib H.E.*. Zinc oxide/carbon nanotube nanocomposite for high-performance flexible supercapacitor with sensing ability. Electrochimica Acta, 2020 350:136353.
8. Wang W., Cao J.*, Bowen C. R., Zhang Y., Lin J. Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dynamics, 2018, 94: 1183–1194.
9. Wang W.*, Wei H., Wei ZH. Numerical analysis of a magnetic-spring-based piecewise nonlinear electromagnetic energy harvester. European Physical Journal Plus, 2022, 137(1): 56.
10. Wang W. *, Cao J., Wei Z. H., et al. Stochastic analysis of asymmetric monostable harvesters driven by Gaussian white noise with moment differential equations. European Physical Journal Plus, 2021, 136(1): 1-16.
11. Wang W., Cao J.*, Bowen C.R., Litak G. Probability and output analysis of asymmetric bistable energy harvesters subjected to Gaussian white noise. European Physical Journal Plus, 2019, 134: 558.
12. Wang W. *, Cao J., Wei Z. H., et al. Approximate Fokker–Planck–Kolmogorov equation analysis for asymmetric multistable energy harvesters excited by white noise. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(2): 023407.
13. Huang C., Wang L., Wang W.* (通信作者), Wang K. Sensitivity-based nonlinear restoring force identification of multistable piezoelectric energy harvesters. European Physical Journal Plus, 2022, 137(2): 1-19.
14. Wang W.*, Zhang Y., Bowen CR., Wei ZH, Cao J. Energy Harvesting from Ultra-low-Frequency Vibrations Through a Quasi-zero Stiffness Electromagnetic Energy Harvester. Journal of Vibration Engineering & Technologies, (2022).
15. Wang W., Cao J.*, Bowen C.R., Litak G. Nonlinear Response Identification of an Asymmetric Bistable Harvester Excited At Different Bias Angles by Multiscale Entropy and Recurrence Plot. ASME Journal of Computational and Nonlinear Dynamics, 2020.
16. Wang W., Cao J.*, Bowen C.R., Litak G. Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. European Physical Journal B, 2018, 91: 254.
17. Wang W.*, Zhang Y., Cao J., et al. Possible strategies for performance enhancement of asymmetric potential bistable energy harvesters by orbit jumps. European Physical Journal B, 2022, 95 (58).
18. Liu S, Wang W.* (通信作者). Response Analysis of Asymmetric Monostable Harvesters Driven by Color Noise and Band-Limited Noise. Applied Sciences, 2021, 11(19): 9227.
19. 王伟, 曹军义*, 林京, 周生喜, 蔡云龙. 一种非线性双稳态人体运动能量俘获技术. 西安交通大学学报, 2015, 49(8); 58-63.
20. Cao J.*, Wang W., Zhou S., Inman D. J., Lin J. Nonlinear time-varying potential bistable energy harvesting from human motion. Applied Physics Letters, 2015, 107(14): 143904.