师资队伍

副教授

翟书杰

作者: 来源: 阅读次数: 日期:2024-03-28


姓名:翟书杰

职称:副教授

研究领域:微分几何 子流形几何

邮箱:zhaishujie@zzu.edu.cn


简要经历

2002年获得郑州大学系统科学与数学系理学学士学位,2005年获得郑州大学数学系微分几何方向理学硕士学位,2017年获得郑州大学数学与统计学院微分几何方向理学博士学位。2005年7月起在郑州大学数学与统计学院从事教学科研工作。


主要项目

1.主持国家自然科学基金青年项目:黎曼子流形的分类及相关问题的研究,已结项.

2.作为主要成员参与完成国家自然科学基金面上项目3项,青年项目1项.

3.主持1项校级教改项目:《解析几何》课程教学的创新与实践 2022ZZUJG160;

4.主持1项校级混合式一流课程(重点项目):《解析几何》2021ZZUKCLX008.


奖励

获河南省自然科学优秀学术论文奖一等奖1次,二等奖1次,三等奖2次,河南省教育厅自然科学优秀科技论文奖一等奖2次.

2020年5月获评校级本科教育线上教学优秀课程 《概率论与数理统计》.


论文

1.Zhai Shujie*, Xing Cheng,Classification of semi-parallel hypersurfaces of the product of two spheres,Differential Geometry and Its Applications,9,2023, Paper No. 102067, 13 pp.

2.Hu Zejun, Xie Bingxin, Zhai Shujie,Submanifolds with semi-parallel Möbius second fundamental form in the unit sphere.Journal of Geometric Analysis,33, 2023, 44 pp.

3. Xing Cheng, Zhai Shujie*,Minimal Legendrian submanifolds in Sasakian space formswithC-parallel second fundamental form, Journal of Geometry and Physics,187, 2023,15 pp.

4. Zhai Shujie*, Zhang Heng, Minimal Legendrian submanifolds of S^9 with nonnegativesectional curvature, Turkish Journal of Mathematics,46, 2022: 2854-2866.

5. YinBangchao, ZhaiShujie *,Classificationof Moebius minimal and Moebius isotropic hypersurfaces in S^5, AIMS Mathematics,6(8), 2021: 8426–8452.

6. Li Dehe, Zhai Shujie*, Real Hypersurfaces in Complex Grassmannians of Rank Two,Mathematics,9,2021, 3238, 13pp.

7. Hu Zejun, Zhai Shujie*, Submanifolds with parallel Moebius second fundamental form in the unit sphere,Results in Mathematics,73, 2018, Paper No. 93, 46 pp.

8. Zhai Shujie*, Guo Xiuli, Hu Zejun, Hypersurfaces in the unit sphere with parallelMoebius form and constantpara-Blaschke eigenvalues,Turkish Journal of Mathematics,42,2018:1180-1192.

9. Hu Zejun, Li Dehe, Zhai Shujie, On generalized m-quasi-Einstein manifolds with constant Ricci curvatures,Journal of Mathematical analysis and applications,446, 2017: 843-851.

10. Zhai Shujie*, Hu Zejun, Wang Changping, On submanifolds with parallel Moebius second fundamental form in the unit sphere,International Journal of Mathematics,25, 2014:1450062.

11. Hu Zejun,Li Xingxiao, Zhai shujie,On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues, Science China Mathematics,54, 2011: 2171-2194.

12. Hu Zejun, Zhai Shujie,Moebius isoparametric hypersurfaces with three distinct principal curvatures, II, Pacific Journal of Mathematics,249, 2011: 343-370.

13. Chu Yawei, Zhai Shujie,On spacelike hypersurfaces with constant scalar curvature in the anti-de Sitter space,Differential Geometry and its Applications,29, 2011: 737–746.

14. Hu Zejun, Zhai Shujie,Classification of Moebius isoparametric hypersurfaces in S^6, Tohoku Mathematical Journal,60, 2008: 499–526.

15. Hu Zejun, Mike Scherfner, Zhai Shujie,On spacelike hypersurfaces with constant scalar curvature in the de Sitter space, Differential Geometry and Its Applications,25, 2007: 594–611.

16. Hu Zejun, Zhai Shujie, Hypersurfaces of the hyperbolic space with constant scalar curvature,Results in Mathematics,48, 2005: 65-88.

17. Hu Zejun, Zhai Shujie, ASphere Theorem for even-dimensional submanifolds of the unit sphere,Journal of Zhengzhou University (理学版),37,2005:1-4.

上一篇:杨永琴

下一篇:曾昕