杨志荣
郑州大学化工学院副研究员,直聘研究员,硕士生导师
一、个人简介
聚焦国家“双碳”背景下碳基资源的低碳高效转化和化工过程强化新技术的迫切需要,通过反应动力学/机理和过程传递分析,结合反应主控尺度结构的快速辨识,致力于高值/电子化学品的连续高效合成与膜分离强化技术开发。以第一及通讯作者在AIChE J、Chem. Eng. Sci.、Angew. Chem. Int. Ed.等期刊发表SCI论文30余篇,申请和授权发明专利14件。主持国家自然科学基金面上项目和青年基金项目、河南省重点研发与应用推广项目、中国博士后基金特别资助项目、面上项目等。
二、教育工作经历
2013.09-2016.07太原理工大学省部共建煤科学与技术国家重点实验室化学工程专业硕士
2016.09-2019.07中国科学院山西煤炭化学研究所煤转化国家重点实验室化学工艺专业博士
2019.07-2023.02华东理工大学化学工程联合国家重点实验室化工工程专业博士后(助理研究员)
2023.02-今郑州大学化工学院直聘研究员,副研究员
三、研究方向及招生要求
研究方向:
(1)微化工反应过程强化(反应器设计和理论模拟计算)
(2)膜分离过程强化(有机溶剂纳滤、连续流膜分离萃取)
(3)连续流催化化学(连续流耦合催化主控尺度辨析与过程设计)
一级学科:化学工程与技术
招生专业:化学工程、化学工艺、材料与化工
招生要求:听话、动手能力强、勤奋踏实、做事有责任心,有化学反应工程与有机化学背景。
联系方式Email:zhryang@zzu.edu.cn
四、主持项目:
[1]国家自然科学基金面上项目(22478362),硝基化学品的微通道定向合成:混酸硝化活性相微界面传质-分离强化机制,2025.01-2028.12,50万,在研。
[2]国家自然科学基金青年基金项目(22008072),基于催化热解强化技术的生物质醚氧键定向转化对煤基重烃结构的调控机制,2021.01-2023.12,24万,结题。
[3]河南省河南省科技攻关项目(242102321032),面向混酸硝化制硝基化学品的微化工过程强化联控技术开发和应用,2024.01-2025.12,10万,在研。
[4]中国博士后科学基金特别资助项目(2019TQ0093),生物质和煤共热解强化和油品原位定向催化提质,2019.09-2021.12,18万,结题。
[5]中国博士后科学基金面上项目(2020M671025),生物质和煤共热解强化过程中铜催化醚氧键选择性断裂对重烃桥键结构的影响行为研究,2020.01-2022.12,8万,结题。
[6]横向项目,芳香烃微通道连续流硝化、磺化技术开发, 2024.01-2028.12. 100万,在研。
[7]郑州大学科研启动经费,30万,在研。
五、发表论文(一作和通讯):
[1]Yang Zhirong, Li Yurou, Cao Yueqiang*, Zhao Xingqiang, Chen Wenyao, Zhang Jing, Qian Gang, Peng Chong*, Gong Xueqing, Duan Xuezhi. Al2O3microrods supported Pd catalysts for semi-hydrogenation of acetylene: Acidic properties tuned reaction kinetics behaviors.Chemical Engineering Journal. 2022, 445(0): 136681
[2]Yang Yue, Du Wei, Qian Gang, Duan Xuezhi, Gu Xiongyi, Zhou Xinggui,Yang Zhirong*, Zhang Jing*. Kinetically guided high-yield and rapid production of ε-caprolactone in a microreactor system.AIChE Journal. 2023, 69(3): e17867.
[3]Yang Zhirong, Yang Yue, Zhang Xuefeng, Du Wei, Zhang Jing*, Qian Gang, Duan Xuezhi, Zhou Xinggui*. High-yield production of p-diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system.AIChE Journal. 2021, 68(2): e17498
[4]Lin Yan, Luo Li,Yang Zhirong*; Shi Yao; Qian Gang; Peng Chong; Lv Zhenhui; Zhang Jing; Duan Xuezhi. Controlled engineering of high-purity pseudo-boehmite with large pore volume by aluminum alkoxide hydrolysis: Mechanistic understanding and reforming catalysis.Chemical Engineering Science. 2024, 298: 120372.
[5]Yang Zhirong, Shi Yao, Lin Yan, Luo Li, Song Nan, Lin Jianyang, Peng Chong, Sui Baokuan, Zhang Jing*, Qian Gang, Duan Xuezhi*, Zhou Xinggui. Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming.Chemical Engineering Science. 2022, 252: 117286
[6]Lin Jianyang1,Yang Zhirong1,*, Zhao Xingqiang,Ji Honghai, Peng Chong, Sui Baokuan, Chen Wenyao, Zhang Jing, Qian Gang, Zhou Xinggui, Duan Xuezhi*. Kinetics and mechanistic insights into the hydrothermal synthesis of alumina microrods.Chemical Engineering Science. 2021, 244: 116817
[7]Meiqi Gao1,Zhirong Yang1,Haijiao Zhang, Junhao Ma, Yidong Zou*, Xiaowei Cheng, Limin Wu*, Dongyuan Zhao, Yonghui Deng*. Ordered Mesopore Confined Pt Nanoclusters Enables Unusual Self-Enhancing Catalysis.ACS Central Science. 2022, 8(12): 1633-1645.
[8]Chongchong Chen, Hexiang Gao, Hui Li, Mingchao Wang, Jie Zhang*, Tengfei Li, Wenjia Wu,Zhirong Yang*, Jingtao Wang. Adipic acid-mediated hydrogen bonding network allocation for efficient proton conduction in water-stabilized lamellar MOF membranes.Fuel. 2024, 378: 132855.
[9]Zhong Fuzeyu, Ge Xiaohu, Sun Weixiao, Du Wei, Sang Keng, Yao Chang, Cao Yueqiang, Chen Wenyao, Qian Gang, Duan Xuezhi,Yang Zhirong*, Zhou Xinggui, Zhang Jing*. Total hydrogenation of hydroxymethylfurfural via hydrothermally stable Ni catalysts and the mechanistic study.Chemical Engineering Journal. 2023, 455: 140536.
[10]Shiwei Liu, Jing Wang, Keqi Wu,Zhirong Yang*, Yan Dai, Junmei Zhang, Wenjia Wu*, Jingtao Wang. Lamellar quasi-solid electrolyte with nanoconfined deep eutectic solvent for high-performance lithium battery.Nano Research. 2024, 17(7): 6176-6183.
[11]Li Zhixiang1,Yang Zhirong1, Yao Chang, Wu Bin, Qian Gang, Duan Xuezhi, Zhou Xinggui*, Zhang Jing*. Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor.Chinese Chemical Letters. 2024, 35: 108893.
[12]Lv Haicheng, Wang Jundi, Shu Zhongming, Qian Gang, Duan Xuezhi,Yang Zhirong*, Zhou Xinggui, Zhang Jing*. Residence time distribution and heat/mass transfer performance of a millimeter scale butterfly-shaped reactor.Chinese Chemical Letter.2023, 34(4):107710.
[13]Ye Mingxing1, Li Yurou1,Yang Zhirong1, Yao Chang, Sun Weixiao, Zhang Xiangxue, Chen Wenyao, Qian Gang, Duan Xuezhi, Cao Yueqiang*, Li Lina, Zhou Xinggui, Zhang Jing*. Ruthenium/TiO2-Catalyzed Hydrogenolysis of Polyethylene Terephthalate: Reaction Pathways Dominated by Coordination Environment.Angewandte Chemie International Edition. 2023, 62, e202301024.
[14]Wang Wenjie, Yao Chang, Ge Xiaohu, Pu Xin, Yuan Jiangchun, Sun Weixiao, Duan Xuezhi, Cao Yueqiang,Yang Zhirong*, Zhou Xinggui, Zhang Jing*. Catalytic conversion of polyethylene into aromatics with Pt/ZSM-5: insights into reaction pathways and rate-controlling step regulation.Journal of Materials Chemistry A. 2023; 11: 14933-40.
[15]Zhu Junao1,Yang Zhirong1,*, Chen Yuanhan, Chen Mingming, Liu Zhen, Cao Yueqiang, Zhang Jing, Qian Gang, Zhou Xinggui, Duan Xuezhi*. Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration.Chinese Journal of Chemical Engineering. 2023, 56: 160-168.
[16]Yang Zhirong, Zhang Jing*, Qian Gang, Duan Xuezhi, Zhou Xinggui. Production of biomass-derived monomers through catalytic conversion of furfural and hydroxymethylfurfural.Green Chemical Engineering. 2021, 2(2): 158-173
[17]Le Wang, Chengxiang Wang, Yang Ren,Zhirong Yang*,Yifan Zheng, Qingqing Zhang, Wenjia Wu*, Jingtao Wang. Free-Standing Polymer Covalent Organic Framework Membrane with High Proton Conductivity and Structure Stability.ACS Applied Polymer Materials,2023, 5(9): 7562-7570.
[18]Lv Haicheng,Yang Zhirong*, Zhang Jing*, Qian Gang, Duan Xuezhi, Shu Zhongming, Zhou Xinggui. Liquid flow and mass transfer behaviors in a butterfly-shaped microreactor.Micromachines. 2021, 12(8): 883
[19]Yang Zhirong, Zhang Jing*, Huang Jiejie, Qian Gang, Duan Xuezhi, Zhou Xinggui. In-situ catalytic upgrading of tar and coke during biomass/coal co-pyrolysis.Industrial & Engineering Chemistry Research.2020, 59: 17182-17191
[20]Yang Zhirong*, Huang Jiejie, Duan Xuezhi, Zhang Jing, Zhou Xinggui. Distribution characteristics of coking products and mechanism of tar lightening in preparation of high-strength gasification-coke with low-rank coal blending.Energy & Fuels. 2019, 33: 10904-10912
[21]Nie Mengxia, Ye Guanghua, Song Nan, Shi Shudong, Qian Gang, Duan Xuezhi, Zhou Xinggui,Yang Zhirong*, Zhang Jing*. Ultrathin hydrophobic inorganic membranes via femtosecond laser engraving for efficient and stable extraction in a microseparator.Industrial & Engineering Chemistry Research. 2022, 61, 11534.
[22]Yang Zhirong, Huang Jiejie*, Wang Zhiqing, Fang Yitian. Unique advantages of gasification-coke prepared with low-rank coal blends via reasonable granularity control.Energy & Fuels. 2019, 33: 2115-2122.
[23]Yang Zhirong, Huang Jiejie*, Song Shuangshuang, Wang Zhiqing, Fang Yitian. Insight into the effects of additive water on caking and coking behaviors of coal blends with low-rank coal.Fuel. 2019, 238: 10-17.
[24]Yang Zhirong, Meng Qingyan, Huang Jiejie*, Wang Zhiqing, Li Chunyu, Fang Yitian. A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal.Fuel Processing Technology. 2018, 177: 101-108.
[25]Yang Zhirong, Gao Meiqi, Bai Yonghui, Li Fan*. Model establishment for the kinetic evaluation of synergistic effect on the coal char gasification with H2O and CO2mixtures.Applied Thermal Engineering. 2017, 118: 682-690.
[26]Yang Zhirong, Gao Meiqi, Wang Yulong, Bai Yonghui, Li Fan*. Identification for the behavior of maximum reaction rate during the initial stage of coal char gasification.Journal of Thermal Analysis and Calorimetry. 2017, 128: 1183-1194.
六、申请或授权专利:
[1]一种多级串联微反应器. 2024-5, CN2024212180682
[2]一种多级串联微反应器及流体混合方法. 2024-5, CN2024106872642
[3]一种批量化制备GO-BN层状膜的工艺.2024-6, CN2024108348685
[4]一种酸碱型HOF层状膜及其制备方法与应用. 2024-2, CN2024103251236
[5]一种多级串联微反应器及流体混合方法. 2022-7, ZL202110500782.5
[6]用于膜萃取的微孔膜、连续逆流微孔膜萃取器及分离方法. 2023-8, ZL202210458385.
[7]一种微通道连续合成碳酸亚乙烯酯或/和氟代碳酸乙烯酯的方法. 2022-6, CN202210670725.6.
[8]一种微通道连续合成2,6-二氨基-3,5-二硝基吡啶(DADNP)的方法. 2022-6, CN202210672465.6.
[9]一种高比例配入长焰煤生产高强度高反应性气化焦的方法. 2019-11,ZL201710447529.1
[10]一种提高低阶煤配煤制取高强度焦炭产率的方法. 2020-12,ZL201810424344.3.
[11]一种提高煤焦气化反应性的方法. 2020-5,ZL201611223268.7
[12]高纯度己内酯的微流控合成方法. 2022-3, CN202210292898.9.
[13]一种提高合成碳酸亚乙烯酯产率的方法. 2022-5, CN202210672379.8.
[14]一种带有换热通道的流体混合器及流体混合方法. 2021-5, ZL202110500297.