李纲

作者: 时间:2021-02-06 点击数:


李纲教授

 

博士、博士生导师、硕士生导师。

联系方式Email:gangli@zzu.edu.cn


研究方向:设计具有特定结构的晶态固体材料(如MOFs、HOFs以及COFs等),揭示其在质子传导、传感、能源等领域的应用价值。


工作经历

郑州大学化学学院(199607-现在)

英国萨塞克斯大学化学系博士后(200409-200509)

香港中文大学访问学者(200401-200407) 


荣誉称号:

◆教育部新世纪优秀人才

◆河南省优秀教师

◆宝钢教育优秀教师奖

◆河南省高等学校中青年骨干教师

◆河南省教育厅学术技术带头人

 

研究生指导

◆获得2016-2020年郑州大学优秀研究生导师称号

◆指导的研究生共8人获得国家奖学金[博士生刘瑞兰(2021届);硕士生陈鑫及郭忠铖(2022届)、孙志兵(2019届)、岳志芳(2015届)、张宇及熊志芳(2014届)、郭梦薇(2013届)]

◆硕士生谢晓新(2020届)、孙志兵(2019)、王成洁及郭梦薇(2013届)、曹新江(2012届)、王文月(2011届)的毕业论文获“河南省优秀硕士论文”

◆张宇(2014届)获2013年度宝钢教育优秀学生奖

 

本科教学

◆郑州大学第二届讲课大赛二等奖

◆指导国家级大学生创新创业项目6项;校级大学生创新创业项目7项

◆指导的参与大学生创新实验的本科生陈南、黎黎、刘少峰分获2012、2013、2014年度郑州大学“学术之星”称号。陈南还获得2012年度宝钢教育基金会优秀学生特等奖,是我校本科生首获此殊荣。

◆指导的“质子导电性能优良的HOFs的研制”获2021年河南省本科高校大学生创新创业训练计划项目优秀成果二等奖

◆主编《新编普通化学》(郑州大学出版社,2007),该教材获郑州大学优秀教材二等奖(2009年)

 

科研项目(主持)

1. 国家自然科学基金面上项目(起止:202101-202412;编号:22071223)

2. 国家自然科学基金面上项目(起止:201601-201912;编号:21571156)

3. 国家自然科学基金面上项目(起止:201001-201312;编号:21071127)

4. 国家自然科学基金主任基金(起止:201401-201412;编号:21341002)

5. 国家自然科学基金青年项目(起止:200601-200812;编号:20501017)

6. 教育部新世纪人才支持计划(起止:201001-201312;编号:NCET-10-0139)

7. 教育部重点科研项目(起止:200701-200912;编号:207067)

8. 教育部留学归国基金(起止:200601-200812)

 

近期代表性论文(逆年序排列、均为通讯作者):

1. Proton conductive metal–organic frameworks based on main-group metals.Coordin. Chem. Rev.,2022, 452, 214301.

2. Metal@COFs possess high proton conductivity with mixed conducting mechanisms.ACS Appl. Mater. Interfaces,2022,14, 15687-15696.

3. Proton conductive lanthanide-based metal-organic frameworks: synthesis strategies, structural features and recent progress.Topics Curr. Chem.,2022,380, 9.

4. High protonic conductivity of three highly stable nanoscale hafnium(IV) metal-organic frameworks and their imidazole-loaded products.Inorg. Chem.,2022,61, 4938-4947.

5. Proton conductiveN-heterocyclic metal–organic frameworks.Coordin. Chem. Rev.,2021,432, 213754.

6. Proton conductive metal sulfonate frameworks.Coordin. Chem. Rev.,2021,431, 213747.

7. Bi(III) MOFs: Syntheses, structures and applications.Inorg. Chem. Front.,2021, 8, 572-589.

8. High and tunable proton conduction in six 3D substituted imidazole dicarboxylate-based lanthanide-organic frameworks.Inorg. Chem.,2021,60, 10808−10818.

9. High proton conduction in three highly water-stable hydrogen-bonded ferrocene-based phenyl carboxylate frameworks.Inorg. Chem.,2021,60, 19278-19286.

10. Proton conductive covalent organic frameworks.Coordin. Chem. Rev.,2020,422, 213465.

11. Proton conductive carboxylate-based metal-organic frameworks.Coordin. Chem. Rev.,2020,403, 213100.

12. Proton conductive Zr-MOFs.Inorg. Chem. Front.,2020,7, 3765-3784.

13. Structural effect on proton conduction in two highly stable disubstituted ferrocenyl carboxylate frameworks.Inorg. Chem.,2020,59, 10243–10252.

14. Ultrahigh proton conduction in two highly stable ferrocenyl carboxylate frameworks.ACS Appl. Mater. Interfaces,2019,11, 31018−31027.

15. A highly proton conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing.ACS Appl. Mater. Interfaces,2019,11, 1713-1722.

16. Impressive proton conductivities of two highly stable metal-organic frameworks constructed by substituted imidazole dicarboxylates.Inorg. Chem.,2019,58, 5173−5182.

17. Two highly stable proton conductive cobalt(II)-organic frameworks as impedance sensors for formic acid.Chem. - Eur. J.,2019, 25, 14108 – 14116.

18. A highly stable two-dimensional copper(II)-organic framework for proton conduction and ammonia impedance sensing.Chem. - Eur. J.,2018, 24, 10829– 10839.

19. A water-stable proton conductive barium(II)-organic framework for ammonia sensing at high humidity.Inorg. Chem.,2018,57, 7104-7112.

20. A comparative investigation on proton conductivities for two metal-organic frameworks under water and aqua-ammonia vapors.Inorg. Chem.,2018,57, 1474–1482.

21. Enhancing proton conductivity of a 3D metal−organic framework by attaching guest NH3molecules.Inorg. Chem.,2018,57, 11560−11568.

22. Effective approach to promoting the proton conductivity of metal−organic frameworks by exposure to aqua−ammonia vapor.ACS Appl. Mater. Interfaces,2017,9, 25082–25086.

 

版权所有 © 2020  郑州大学化学学院