
李纲教授
博士、博士生导师、硕士生导师。
联系方式:Email:gangli@zzu.edu.cn
研究方向:设计具有特定结构的晶态固体材料(如MOFs、HOFs以及COFs等),揭示其在质子传导、传感、能源等领域的应用价值。
工作经历:
郑州大学化学学院(199607-现在)
英国萨塞克斯大学化学系博士后(200409-200509)
香港中文大学访问学者(200401-200407)
荣誉称号:
◆教育部新世纪优秀人才
◆河南省优秀教师
◆宝钢教育优秀教师奖
◆河南省高等学校中青年骨干教师
◆河南省教育厅学术技术带头人
研究生指导:
◆获得2016-2020年郑州大学优秀研究生导师称号
◆指导的研究生共8人获得国家奖学金[博士生刘瑞兰(2021届);硕士生陈鑫及郭忠铖(2022届)、孙志兵(2019届)、岳志芳(2015届)、张宇及熊志芳(2014届)、郭梦薇(2013届)]
◆硕士生谢晓新(2020届)、孙志兵(2019)、王成洁及郭梦薇(2013届)、曹新江(2012届)、王文月(2011届)的毕业论文获“河南省优秀硕士论文”
◆张宇(2014届)获2013年度宝钢教育优秀学生奖
本科教学:
◆郑州大学第二届讲课大赛二等奖
◆指导国家级大学生创新创业项目6项;校级大学生创新创业项目7项
◆指导的参与大学生创新实验的本科生陈南、黎黎、刘少峰分获2012、2013、2014年度郑州大学“学术之星”称号。陈南还获得2012年度宝钢教育基金会优秀学生特等奖,是我校本科生首获此殊荣。
◆指导的“质子导电性能优良的HOFs的研制”获2021年河南省本科高校大学生创新创业训练计划项目优秀成果二等奖
◆主编《新编普通化学》(郑州大学出版社,2007),该教材获郑州大学优秀教材二等奖(2009年)
科研项目(主持):
1. 国家自然科学基金面上项目(起止:202101-202412;编号:22071223)
2. 国家自然科学基金面上项目(起止:201601-201912;编号:21571156)
3. 国家自然科学基金面上项目(起止:201001-201312;编号:21071127)
4. 国家自然科学基金主任基金(起止:201401-201412;编号:21341002)
5. 国家自然科学基金青年项目(起止:200601-200812;编号:20501017)
6. 教育部新世纪人才支持计划(起止:201001-201312;编号:NCET-10-0139)
7. 教育部重点科研项目(起止:200701-200912;编号:207067)
8. 教育部留学归国基金(起止:200601-200812)
近期代表性论文(逆年序排列、均为通讯作者):
1. Proton conductive metal–organic frameworks based on main-group metals.Coordin. Chem. Rev.,2022, 452, 214301.
2. Metal@COFs possess high proton conductivity with mixed conducting mechanisms.ACS Appl. Mater. Interfaces,2022,14, 15687-15696.
3. Proton conductive lanthanide-based metal-organic frameworks: synthesis strategies, structural features and recent progress.Topics Curr. Chem.,2022,380, 9.
4. High protonic conductivity of three highly stable nanoscale hafnium(IV) metal-organic frameworks and their imidazole-loaded products.Inorg. Chem.,2022,61, 4938-4947.
5. Proton conductiveN-heterocyclic metal–organic frameworks.Coordin. Chem. Rev.,2021,432, 213754.
6. Proton conductive metal sulfonate frameworks.Coordin. Chem. Rev.,2021,431, 213747.
7. Bi(III) MOFs: Syntheses, structures and applications.Inorg. Chem. Front.,2021, 8, 572-589.
8. High and tunable proton conduction in six 3D substituted imidazole dicarboxylate-based lanthanide-organic frameworks.Inorg. Chem.,2021,60, 10808−10818.
9. High proton conduction in three highly water-stable hydrogen-bonded ferrocene-based phenyl carboxylate frameworks.Inorg. Chem.,2021,60, 19278-19286.
10. Proton conductive covalent organic frameworks.Coordin. Chem. Rev.,2020,422, 213465.
11. Proton conductive carboxylate-based metal-organic frameworks.Coordin. Chem. Rev.,2020,403, 213100.
12. Proton conductive Zr-MOFs.Inorg. Chem. Front.,2020,7, 3765-3784.
13. Structural effect on proton conduction in two highly stable disubstituted ferrocenyl carboxylate frameworks.Inorg. Chem.,2020,59, 10243–10252.
14. Ultrahigh proton conduction in two highly stable ferrocenyl carboxylate frameworks.ACS Appl. Mater. Interfaces,2019,11, 31018−31027.
15. A highly proton conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing.ACS Appl. Mater. Interfaces,2019,11, 1713-1722.
16. Impressive proton conductivities of two highly stable metal-organic frameworks constructed by substituted imidazole dicarboxylates.Inorg. Chem.,2019,58, 5173−5182.
17. Two highly stable proton conductive cobalt(II)-organic frameworks as impedance sensors for formic acid.Chem. - Eur. J.,2019, 25, 14108 – 14116.
18. A highly stable two-dimensional copper(II)-organic framework for proton conduction and ammonia impedance sensing.Chem. - Eur. J.,2018, 24, 10829– 10839.
19. A water-stable proton conductive barium(II)-organic framework for ammonia sensing at high humidity.Inorg. Chem.,2018,57, 7104-7112.
20. A comparative investigation on proton conductivities for two metal-organic frameworks under water and aqua-ammonia vapors.Inorg. Chem.,2018,57, 1474–1482.
21. Enhancing proton conductivity of a 3D metal−organic framework by attaching guest NH3molecules.Inorg. Chem.,2018,57, 11560−11568.
22. Effective approach to promoting the proton conductivity of metal−organic frameworks by exposure to aqua−ammonia vapor.ACS Appl. Mater. Interfaces,2017,9, 25082–25086.